727 research outputs found

    The pre treatment systemic inflammatory response is an important determinant of poor pathologic response for patients undergoing neoadjuvant therapy for rectal cancer

    Get PDF
    Background Not all patients respond equally to neoadjuvant chemoradiotherapy (nCRT), with subsequent effects on survival. The systemic inflammatory response has been shown to predict long-term outcomes in colorectal cancer. The current study examined the association between systemic inflammation and nCRT in patients with rectal cancer. Methods Between 1999 and 2010, patients who underwent nCRT were identified. Serum measurements of hemoglobin, C-reactive protein, albumin, modified Glasgow prognostic score (mGPS), and differential white cell counts were obtained before and after nCRT. The Rödel scoring system measured pathologic tumor regression, and magnetic resonance imaging and computed tomography determined radiologic staging. Results The study included 79 patients. Of these patients, 37% were radiologically downstaged, and 44% were categorized as showing a good pathologic response (Rödel scores 3 and 4). As a validated measure of the systemic inflammatory response, mGPS (P = 0.022) was associated with a poor pathologic response to nCRT. A radiologic response was associated with a good pathologic response to treatment (P = 0.003). A binary logistic regression model identified mGPS (odds ratio [OR] 0.27; 95% confidence interval [CI] 0.07–0.96; P = 0.043) and radiologic response (OR 0.43; 95% CI 0.18–0.99; P = 0.048) as strong independent predictors of a pathologic response to treatment. Conclusion The current study showed that a systemic inflammatory response before nCRT is associated with a poor pathologic response. Further study in a prospective controlled trial setting is warranted. Stephan B. Dreyer and Arfon G. M. T. Powell—contributed equally. Colorectal cancer (CRC) is the third most common cancer and the second highest cause of cancer death in the United Kingdom.1 The 5-year survival rate for CRC still is less than 60% with surgery alone, offering the only chance of cure. Rectal cancers comprise about one third of surgical resections for colorectal cancer.2 The widely adapted surgical technique of total mesorectal excision (TME), increased centralization, specialization of rectal surgery, and earlier disease detection have led to improved survival in the last 30 years.3,4 Preoperative neoadjuvant radiotherapy with or without chemotherapy currently is accepted as a standard of care for patients with margin-threatening rectal cancer. This increases disease-free survival (DFS) and sphincter preservation rates and improves circumferential resection margins and local recurrence rates.5–8 Current management of CRC in the United Kingdom involves evaluating patients using magnetic resonance imaging (MRI) and computed tomography (CT) before treatment to identify those with margin-threatening disease (T3 or T4).9 These patients are offered neoadjuvant chemoradiotherapy (nCRT) before surgical resection.10 Not all patients respond to nCRT, and there is a need to identify biomarkers of response because treatment is associated with significant morbidity. Rödel et al.11 have shown that the presence of spontaneous apoptosis in the resected specimen is a good marker of tumor regression and improved prognosis. The prognostic value of the systemic inflammatory response (SIR) has been widely studied in gastrointestinal cancers, particularly in the operative setting, using measurements of circulating markers including C-reactive protein (CRP), albumin, the modified Glasgow prognostic score (mGPS), the neutrophil lympocyte ratio (NLR), the platelet-to-lymphocyte ratio (PLR), and more recently, the neutrophil-platelet score (NPS) and the derived neutrophil-to-lymphocyte ratio (dNLR).12–16 This study investigated the association between markers of the systemic inflammatory response and the pathologic response to nCRT in patients with rectal cancer

    Feasibility and clinical utility of endoscopic ultrasound guided biopsy of pancreatic cancer for next-generation molecular profiling.

    Get PDF
    Next-generation sequencing is enabling molecularly guided therapy for many cancer types, yet failure rates remain relatively high in pancreatic cancer (PC). The aim of this study is to investigate the feasibility of genomic profiling using endoscopic ultrasound (EUS) biopsy samples to facilitate personalised therapy for PC. Ninty-five patients underwent additional research biopsies at the time of diagnostic EUS. Diagnostic formalin-fixed (FFPE) and fresh frozen EUS samples underwent DNA extraction, quantification and targeted gene sequencing. Whole genome (WGS) and RNA sequencing was performed as proof of concept. Only 2 patients (2%) with a diagnosis of PC had insufficient material for targeted sequencing in both FFPE and frozen specimens. Targeted panel sequencing (n=54) revealed mutations in PC genes (KRAS, GNAS, TP53, CDKN2A, SMAD4) in patients with histological evidence of PC, including potentially actionable mutations (BRCA1, BRCA2, ATM, BRAF). WGS (n=5) of EUS samples revealed mutational signatures that are potential biomarkers of therapeutic responsiveness. RNA sequencing (n=35) segregated patients into clinically relevant molecular subtypes based on transcriptome. Integrated multi-omic analysis of PC using standard EUS guided biopsies offers clinical utility to guide personalized therapy and study the molecular pathology in all patients with PC

    Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation

    Full text link
    Catalysis makes possible a chemical reaction by increasing the transformation rate. Hydrogenation of carbon-carbon multiple bonds is one of the most important examples of catalytic reactions. Currently, this type of reaction is carried out in petrochemistry at very large scale, using noble metals such as platinum and palladium or first row transition metals such as nickel. Catalysis is dominated by metals and in many cases by precious ones. Here we report that graphene (a single layer of one-atom-thick carbon atoms) can replace metals for hydrogenation of carbon-carbon multiple bonds. Besides alkene hydrogenation, we have shown that graphenes also exhibit high selectivity for the hydrogenation of acetylene in the presence of a large excess of ethylene.This study was financially supported by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315); and Generalidad Valenciana (Prometeo 21/013) is gratefully acknowledged.Primo Arnau, AM.; Neatu, F.; Florea, M.; Parvulescu, V.; García Gómez, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications. 5:1-9. https://doi.org/10.1038/ncomms6291S195Dreyer, D. R. & Bielawski, C. W. Carbocatalysis: heterogeneous carbons finding utility in synthetic chemistry. Chem. Sci. 2, 1233–1240 (2011).Machado, B. F. & Serp, P. Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54–75 (2012).Schaetz, A., Zeltner, M. & Stark, W. J. Carbon modifications and surfaces for catalytic organic transformations. ACS Catal. 2, 1267–1284 (2012).Su, D. S. et al. Metal-free heterogeneous catalysis for sustainable chemistry. ChemSusChem 3, 169–180 (2010).Chauhan, S. M. S. & Mishra, S. Use of graphite oxide and graphene oxide as catalysts in the synthesis of dipyrromethane and calix[4]pyrrole. Molecules 16, 7256–7266 (2011).Dreyer, D. R., Jarvis, K. A., Ferreira, P. J. & Bielawski, C. W. Graphite oxide as a carbocatalyst for the preparation of fullerene-reinforced polyester and polyamide nanocomposites. Polym. Chem. 3, 757–766 (2012).Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).Pyun, J. Graphene oxide as catalyst: application of carbon materials beyond nanotechnology. Angew. Chem. Int. Ed. 50, 46–48 (2011).Rourke, J. P. et al. The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 50, 3173–3177 (2011).Sun, H. et al. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants. ACS Appl. Mater. Interf. 4, 5466–5471 (2012).Dreyer, D. R., Jia, H. P. & Bielawski, C. W. Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. 49, 6813–6816 (2010).Dreyer, D. R., Jia, H. P., Todd, A. D., Geng, J. X. & Bielawski, C. W. Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Org. Biomol. Chem. 9, 7292–7295 (2011).Hayashi, M. Oxidation using activated carbon and molecular oxygen system. Chem. Rec. 8, 252–267 (2008).Jia, H. P., Dreyer, D. R. & Bielawski, C. W. C-H oxidation using graphite oxide. Tetrahedron 67, 4431–4434 (2011).Kumar, A. V. & Rao, K. R. Recyclable graphite oxide catalyzed Friedel-Crafts addition of indoles to alpha, beta-unsaturated ketones. Tetrahedron Lett. 52, 5188–5191 (2011).Soria-Sanchez, M. et al. Carbon nanostructure materials as direct catalysts for phenol oxidation in aqueous phase. Appl. Catal. B Environ. 104, 101–109 (2011).Verma, S. et al. Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chem. Commun. 47, 12673–12675 (2011).Yu, H. et al. Solvent-free catalytic dehydrative etherification of benzyl alcohol over graphene oxide. Chem. Phys. Lett. 583, 146–150 (2013).Holschumacher, D., Bannenberg, T., Hrib, C. G., Jones, P. G. & Tamm, M. Heterolytic dihydrogen activation by a frustrated carbene-borane Lewis pair. Angew. Chem. Int. Ed. 47, 7428–7432 (2008).Staubitz, A., Robertson, A. P. M., Sloan, M. E. & Manners, I. Amine- and phosphine-borane adducts: new interest in old molecules. Chem. Rev. 110, 4023–4078 (2010).Stephan, D. W. & Erker, G. Frustrated Lewis Pairs: Metal-free Hydrogen Activation and More. Angew. Chem. Int. Ed. 49, 46–76 (2010).Poh, H. L., Sanek, F., Sofer, Z. & Pumera, M. High-pressure hydrogenation of graphene: towards graphane. Nanoscale 4, 7006–7011 (2012).Sofo, J. O., Chaudhari, A. S. & Barber, G. D. Graphane: A two-dimensional hydrocarbon. J. Phys. Chem. B 75, 153401 (2007).Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).Despiau-Pujo, E. et al. Elementary processes of H2 plasma-graphene interaction: a combined molecular dynamics and density functional theory study. J. Appl. Phys. 113, 114302 (2013).Xu, L. & Ge, Q. Effects of defects and dopants in graphene on hydrogen interaction in graphene-supported NaAlH4. Int. J. Hydrogen Energy 38, 3670–3680 (2013).Perhun, T. I., Bychko, I. B., Trypolsky, A. I. & Strizhak, P. E. Catalytic properties of graphene material in the hydrogenation of ethylene. Theor. Exp. Chem. 48, 367–370 (2013).Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M. & Garcia, H. Doped graphene as a metal-free carbocatalyst for the selective aerobic oxidation of benzylic hydrocarbons, cyclooctane and styrene. Chem. Eur. J. 19, 7547–7554 (2013).Latorre-Sanchez, M., Primo, A. & Garcia, H. P-doped graphene obtained by pyrolysis of modified alginate as a photocatalyst for hydrogen generation from water-methanol mixtures. Angew. Chem. Int. Ed. 52, 11813–11816 (2013).Primo, A., Sanchez, E., Delgado, J. M. & Garcia, H. High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon N. Y. 68, 777–783 (2014).Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N. Y. 45, 1558–1565 (2007).Pumera, M. & Wong, C. H. A. Graphane and hydrogenated graphene. Chem. Soc. Rev. 42, 5987–5995 (2013).Teschner, D. et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320, 86–89 (2008).Bridier, B., Lopez, N. & Perez-Ramirez, J. Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton Trans. 39, 8412–8419 (2010).Flick, K., Herion, C. & Allmann, H. Palladium-haltiger Trägerkatalysator zur selektiven katalytischen Hydrierung von Acetylen in Kohlenwasserstoffströmen. EP764463-A; EP764463-A2; DE19535402-A1; JP9141097-A; CA2185721-A; KR97014834-A; MX9604031-A1; US5847250-A; US5856262-A; TW388722-A; MX195137-B; CN1151908-A; EP764463-B1; DE59610365-G; ES2197222-T3; KR418161-B; CN1081487-C; JP3939787-B2; CA2185721-C (1997).Gartside, R. J. et al. Improved olefin plant recovery system employing a combination of catalytic distillation and fixed bed catalytic steps. WO2005080530-A1; EP1711581-A1; BR200418414-A; MX2006008045-A1; JP2007518864-W; KR2007005565-A; CN1961059-A; IN200604063-P1; KR825662-B1; JP4376908-B2; CA2553962-C; IN251202-B; SG124072-A1; SG124072-B; CN1961059-B (2005).Wegerer, D. A., Bussche, K. V. & Vandenbussche, K. M. Selective Co oxidation for acetylene converter feed Co CONTROL. US2012294774-A1; US8431094-B2 (2102).Chernichenko, K. et al. A frustrated-Lewis-pair approach to catalytic reduction of alkynes to cis-alkenes. Nat. Chem. 5, 718–723 (2013).Vile, G., Bridier, B., Wichert, J. & Perez-Ramirez, J. Ceria in hydrogenation catalysis: high selectivity in the conversion of alkynes to olefins. Angew. Chem. Int. Ed. 51, 8620–8623 (2012).Ambrosi, A. et al. Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. Angew. Chem. Int. Ed. 51, 500–503 (2012).Ambrosi, A. et al. Chemical reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite. Proc. Natl Acad. Sci. USA 109, 12899–12904 (2012).Vile, G., Almora-Barrios, N., Mitchell, S., Lopez, N. & Perez-Ramirez, J. From the lindlar catalyst to supported ligand-modified palladium nanoparticles: selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds. Chemistry 20, 5849–5849 (2014).Gurrath, M. et al. Palladium catalysts on activated carbon supports—Influence of reduction temperature, origin of the support and pretreatments of the carbon surface. Carbon N. Y. 38, 1241–1255 (2000).Stephan, D. W. ‘Frustrated Lewis pairs’: a concept for new reactivity and catalysis. Org. Biomol. Chem. 6, 1535–1539 (2008).Stephan, D. W. Frustrated Lewis pairs: a new strategy to small molecule activation and hydrogenation catalysis. Dalton Trans. 17, 3129–3136 (2009).Chase, P. A., Jurca, T. & Stephan, D. W. Lewis acid-catalyzed hydrogenation: B(C6F5)3-mediated reduction of imines and nitriles with H2. Chem. Commun. 14, 1701–1703 (2008).Hounjet, L. J. & Stephan, D. W. Hydrogenation by frustrated Lewis pairs: main group alternatives to transition metal catalysts? Org. Process Res. Dev. 18, 385–391 (2014).Spies, P. et al. Metal-free catalytic hydrogenation of enamines, imines, and conjugated phosphinoalkenylboranes. Angew. Chem. Int. Ed. 47, 7543–7546 (2008).Greb, L. et al. Metal-free catalytic olefin hydrogenation: low-temperature H2 activation by frustrated Lewis pairs. Angew. Chem. Int. Ed. 51, 10164–10168 (2012)

    Histopathologic predictors of survival and recurrence in resected ampullary adenocarcinoma

    Get PDF
    Objective: The aim of the study was to define histopathologic characteristics that independently predict overall survival (OS) and disease-free survival (DFS), in patients who underwent resection of an ampullary adenocarcinoma with curative intent. Summary Background Data: A broad range of survival rates have been described for adenocarcinoma of the ampulla of Vater, presumably due to morphological heterogeneity which is a result of the different epitheliums ampullary adenocarcinoma can arise from (intestinal or pancreaticobiliary). Large series with homogenous patient selection are scarce. Methods: A retrospective multicenter cohort analysis of patients who underwent pancreatoduodenectomy for ampullary adenocarcinoma in 9 European tertiary referral centers between February 2006 and December 2017 was performed. Collected data included demographics, histopathologic details, survival, and recurrence. OS and DFS analyses were performed using Kaplan–Meier curves and Cox proportional hazard models. Results: Overall, 887 patients were included, with a mean age of 66 ± 10 years. The median OS was 64 months with 1-, 3-, 5-, and 10-year OS rates of 89%, 63%, 52%, and 37%, respectively. Histopathologic subtype, differentiation grade, lymphovascular invasion, perineural invasion, T-stage, N-stage, resection margin, and adjuvant chemotherapy were correlated with OS and DFS. N-stage (HR = 3.30 [2.09–5.21]), perineural invasion (HR = 1.50 [1.01–2.23]), and adjuvant chemotherapy (HR = 0.69 [0.48–0.97]) were independent predictors of OS in multivariable analysis, whereas DFS was only adversely predicted by N-stage (HR = 2.65 [1.65–4.27]). Conclusions: Independent predictors of OS in resected ampullary cancer were N-stage, perineural invasion, and adjuvant chemotherapy. N-stage was the only predictor of DFS. These findings improve predicting survival and recurrence after resection of ampullary adenocarcinoma

    Genomic and molecular analyses identify molecular subtypes of pancreatic cancer recurrence

    Get PDF
    Pancreatic cancer (PC) remains a highly lethal malignancy, and most patients with localized disease that undergo surgical resection still succumb to recurrent disease. Pattern of recurrence after pancreatectomy is heterogenous, with some studies illustrating that site of recurrence can be associated with prognosis.1 Another study suggested that tumors that develop local and distant recurrence can be regarded as a homogenous disease with similar outcomes.2 Here we investigate novel molecular determinants of recurrence pattern after pancreatectomy for PC

    HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3β) a key regulator of glycolysis. Pharmacological inhibition of GSK3β results in selective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines (PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squamous subtype can be further classified using chromatin accessibility to predict responsiveness and tolerance to GSK3β inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC

    Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer

    Get PDF
    Background and aims: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress and novel therapeutic response in PC to develop a biomarker driven therapeutic strategy targeting DDR and replication stress in PC. Methods: We interrogated the transcriptome, genome, proteome and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient derived xenografts and human PC organoids. Results: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, co-segregates with response to platinum (P < 0.001) and PARP inhibitor therapy (P < 0.001) in vitro and in vivo. We generated a novel signature of replication stress with which predicts response to ATR (P < 0.018) and WEE1 inhibitor (P < 0.029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < 0.001) but not associated with DDR deficiency. Conclusions: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR proficient PC, and post-platinum therapy

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV
    corecore