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SUMMARY
Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lin-
eages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by
distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and
GATA6, switchmetabolic profiles from classical (pancreatic) to predominantly squamous,with glycogen syn-
thase kinase 3 beta (GSK3b) a key regulator of glycolysis. Pharmacological inhibition of GSK3b results in se-
lective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines
(PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squa-
mous subtype can be further classified using chromatin accessibility to predict responsiveness and toler-
ance to GSK3b inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can
be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting
the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC.
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This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:peter.bailey.2@glasgow.ac.uk
mailto:andrew.biankin@glasgow.ac.uk
https://doi.org/10.1016/j.celrep.2020.107625
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.107625&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Article
ll

OPEN ACCESS
INTRODUCTION

The prognosis for patients suffering from pancreatic ductal

adenocarcinoma (PDAC) is extremely poor, with less than 8%

of patients surviving for more than 5 years after diagnosis.

PDAC is defined by a complex and heterogeneous mutational

landscape with a handful of highly recurrent mutations in well-

described cancer genes and a plethora of low-frequency events

associated with genes of often unknown function (Bailey et al.,

2016; Biankin et al., 2012; Humphris et al., 2017; Waddell

et al., 2015; Witkiewicz et al., 2015). Establishing which of these

events drive tumor progression and/or survival has proved chal-

lenging. One obstacle is our limited ability to stratify patients for

targeted therapy and a lack of biomarkers to direct clinical deci-

sion-making (Biankin et al., 2015). Improved patient stratification

andmore effective approaches to therapy are urgently needed to

improve outcomes for pancreatic cancer.

Recent integratomic studies have demonstrated that PDAC is

composed of two major transcriptomic subtypes, namely, clas-

sical (pancreatic) and squamous, which are characterized by

distinct mutations, gene expression profiles, and prognosis

(Bailey et al., 2016; Collisson et al., 2011, 2019; Moffitt et al.,

2015). The classical (pancreatic) subtype is characterized by

differentiated duct cell marker expression and a favorable prog-

nosis, whereas the squamous subtype is associated with gene

silencing of endoderm specification genes, such as HNF1A,

HNF4A, and GATA6; metabolic reprogramming; and poor clin-

ical outcome. Importantly, the dynamic changes in gene expres-

sion observed between the classical (pancreatic) and squamous

subtypes are driven by alterations in the epigenetic landscape

(Bailey et al., 2016; Lomberk et al., 2018; Somerville et al.,

2018). The squamous subtype is further typified by mutations

in members of the COMPASS-like complex that regulate histone

methylation, including KDM6A, MLL2, and MLL3 (Andricovich

et al., 2018; Bailey et al., 2016).

Gene programs that characterize PDAC squamous tumors

include those involved in hypoxia response, metabolic reprog-

ramming, and autophagy (Bailey et al., 2016), suggesting that

metabolic targeting in this subtype may be effective. Extensive

work by others has shown that metabolic rewiring is central to

PDAC’s ability to survive within a nutrient- and oxygen-depleted

tumor microenvironment (Chini et al., 2014; Commisso et al.,

2013; Guillaumond et al., 2013; Son et al., 2013). Moreover,

themajor oncogenic driver in PDAC, KRAS, along with the selec-

tive pressure of a hypoxic tumor environment can promotemeta-

bolic rewiring through stimulating glycolysis (Ying et al., 2012)

and autophagy (Yang and Kimmelman, 2011, 2014). These

studies also highlight the intrinsic metabolic plasticity of pancre-

atic cancer cells, which may, in part, explain the lack of signifi-

cant therapeutic benefit of metabolic targeting (Baek et al.,

2014; Boudreau et al., 2016; Sancho et al., 2015). Furthermore,

recent data now suggest that plasticity exists between subtypes.

For example, the targeted inhibition of Colony-Stimulating Fac-

tor 1 Receptor (CSF1R) in LSL-KrasG12D/+;Trp53fl/+;Pdx1-Cre

(KPC) genetically engineered mouse models (GEMMs) results

in a profound reprogramming of tumor cell-intrinsic pathways

from predominantly squamous to classical (pancreatic) (Candido

et al., 2018). Likewise, MET Proto-Oncogene, Receptor Tyro-
2 Cell Reports 31, 107625, May 12, 2020
sone Kinase (MET) inhibition in squamous PDAC induces a tran-

scriptional switch toward classical (pancreatic) associated gene

programs, in particular those driven by GATA6 (Lomberk et al.,

2018). Therefore, metabolic plasticity or adaptation and ther-

apy-induced subtype switching may represent important impli-

cations for disease progression, drug resistance, and the devel-

opment of subtype-specific therapies. Deciphering the

transcriptional regulatory networks underpinning subtype plas-

ticity has the potential to identify therapeutic vulnerabilities and

nodes of therapy evasion.

To address these questions, we used a set of 48 early-pas-

sage PDAC patient-derived cell lines (PDCLs) that provide an

isogenic and experimentally tractable system for developing

and validating subtype-dependent therapeutic vulnerabilities.

We show that PDCLs recapitulate major metabolic transcrip-

tional profiles observed in bulk PDAC tissue, and that plasticity

exists between PDAC subtypes. Specifically, HNF4A and

GATA6 loss in a classical (progenitor) background can drive a

switch toward squamous-associated metabolic reprograming

events and identify GSK3b as a driver of glycolysis. Pharmaco-

logical inhibition of GSK3b showed selective sensitivity in the

squamous subtype; however, a subset of these squamous

PDCLs acquire rapid drug tolerance. Using assay for transpo-

sase-accessible chromatin sequencing (ATAC-seq) analysis,

we show that the squamous subtype separates into two distinct

chromatin subgroups with unique chromatin accessibility and

promoter usage. We demonstrate that the drug-tolerant squa-

mous subgroup has access to an amplified WNT signaling pro-

gram via application of both intronic and distal promoter usage.

Using both transcriptomic and chromatin landscape profiles, we

provide a model system to predict PDAC responders and non-

responders to subtype-specific therapeutic vulnerabilities.

RESULTS

PDAC PDCLs Recapitulate Metabolic Profiles Observed
in PDAC Bulk Tumor Tissue
We have previously demonstrated that transcriptional networks

involved in energy source generation differ substantially between

the classical (pancreatic) and squamous subtypes (Bailey et al.,

2016). Comparative analysis of bulk tumor and PDCL transcrip-

tomes demonstrated that PDCLs faithfully recapitulate the two

broad PDAC transcriptomic subtypes observed in bulk tumor

samples (Figures S1A and S2A; Table S1). Importantly, several

gene programs representing key metabolic processes were

highly preserved in PDCLs and, in keeping with our previous an-

alyses, exhibited subtype-specific enrichment (Figures 1A–1C;

Table S1). Squamous PDCLs were enriched for transcripts regu-

lating mammalian Target Of Rapamycin (mTOR) signaling and

glycolysis, in particular AKT3 and Enolase 1 (ENO1), respec-

tively, whereas the classical (pancreatic) PDCLs were enriched

for fatty acid biosynthesis and elongation processes, such as

the gene encoding the rate-limiting enzyme in fatty acid biosyn-

thesis acetyl-coenzyme A (CoA) carboxylase b (ACACB) and the

beta-oxidation pathway enzyme hydroxyacyl-CoA dehydroge-

nase (HADH). Liquid chromatography-mass spectrometry (LC-

MS) analysis supported these findings and revealed subtype-

specific differences in metabolite pools, with an enrichment of
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glycolysis intermediates in squamous PDCLs (Figure 1H; Table

S2). Similarly, squamous PDCLs were associated with increased

extracellular acidification rates (ECARs; indicative of lactate

accumulation) and decreased oxygen consumption compared

with classical (pancreatic) PDCLs (Figures 1E–1G, and S1B; Ta-

ble S3). Functional assessment of glucose uptake and lactate

production further supported this analysis, with increased

glucose uptake and lactate production indicative of increased

glycolytic flux in squamous PDCLs (Figure 1D; Table S3). Collec-

tively, these data suggest that squamous PDCLs are highly cata-

bolic and utilize glycolysis as their main source of energy.

Glycolytic gene expression, glucose uptake, and lactate

secretion are increased in homozygote KRASG12D/G12D mutated

lung cancer cells relative to KRASG12D/WT heterozygous (Kerr

et al., 2016); therefore, the difference in glycolytic activity be-

tween classical (pancreatic) and squamous PDCLs may be a

consequence of difference in KRAS copy number. However,

DNA sequencing analysis established that KRASG12D heterozy-

gotes and homozygotes were present across both subtypes

(Figure S1C; Table S4). Enhanced glycolysis is a well-estab-

lished phenotype of cancer that is typically associated with

increased growth demands and/or compensatory adaptation

to mitochondrial defects (Lin et al., 2012; Vander Heiden et al.,

2009). Mitochondrial gene mutations were similar across sub-

types (Figure S1D), suggesting that mitochondrial mutations

were not driving a switch toward glycolysis, and growth rates

were not significantly different between subtypes (Figures S1E

and S1F). These data suggest that either differential KRAS de-

pendency (Singh et al., 2009) exists between classical (pancre-

atic) and squamous PDCLs, or a further genetic or epigenetic

event is required to switch cells toward a squamous-like meta-

bolic preference for glycolysis.

Loss ofHNF4AorGATA6 inClassical (Pancreatic) PDCLs
Recapitulates Transcriptional Profiles Associated with
the Squamous Subtype
Wepreviously established that the squamous subtype is charac-

terized by hypermethylation and concordant downregulation of
Figure 1. Metabolic Differences Between Squamous and Classical (Pa

(A) Heatmap of pathways and molecular processes involved in cancer metabolism

and glycolysis in the squamous subtype. PDCLs were ranked from most classi

pathway activity, and grouped into metabolic processes. PDCL ID is listed below

(B) The same signature from (A) was applied to the RNA-seq cohort of bulk tumor

on the top row. The immunogenic subtype has a transcriptional signature associ

classical (pancreatic) subtype (Bailey et al., 2016). ADEX, aberrantly differentiated

pancreatic differentiation.

(C) Heatmaps of key genes involved in glycolysis-gluconeogenesis and triglycer

classical (pancreatic) (orange) and squamous (blue) subtypes of PDCLs, with colo

which is compared with and on the whole recapitulated in bulk tumors.

(D) Relative lactate release and glucose consumption from squamous (TKCC-10 a

PDCLs were determined by colorimetric analysis. Raw values were normalized t

(E) Glycolysis activity profile of squamous and classical (pancreatic) PDCLs usin

(F) Agilent Seahorse XF Cell Mito Stress Test profiles of squamous and classical

(G) Left: ECAR values for cells treated as in (E) corrected for non-glycolytic ac

consumption resultant from processes other than mitochondrial respiration. Box

Independent experiments are shown, n = >6. ***p % 0.001, ****p % 0.0001.

(H) Left: untargeted metabolomic analysis of indicated PDCLs. Right: metaboli

classical and squamous PDCLs.

See also Figures S1 and S2 and Tables S1, S2, S3, and S4.
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genes that govern pancreatic endodermal cell-fate determina-

tion, such as HNF1A, HNF4A, and GATA6, leading to complete

loss of endodermal identity (Bailey et al., 2016). Autosomal domi-

nant mutations in HNF4A result in hereditary forms of diabetes

mellitus referred to as maturity-onset diabetes of the young

(MODY), which is characterized by metabolic reprogramming

and early-onset, non-insulin-dependent diabetes that is closely

related to pancreatic secretory dysfunction (Stride and Hatters-

ley, 2002). Moreover, MODY patients have increased risk for

developing pancreatic cancer (Ræder et al., 2014). Given that

HNF4A and GATA6 are frequently epigenetically silenced in

squamous PDAC tumors (Bailey et al., 2016) and PDCLs (Figures

2A–2C), and mutations in these genes are associated with meta-

bolic reprogramming, we tested whether loss of these transcrip-

tion factors in a classical (pancreatic) genetic background would

drive a switch toward glycolysis (Figure 2D). We focused our

subsequent analysis on the Mayo 5289 PDCL because this cell

line clearly separated into the classical (pancreatic) subtype

following PCA analysis of RNA sequencing (RNA-seq) data (Fig-

ure S2B; Table S1) and expressed RNA and protein of each TF

(Figures 2A and 2B). Using small interfering RNA (siRNA), we tar-

getedGATA6 orHNF4A in Mayo 5289 cells and performed RNA-

seq analysis (Figures 3, S2C, and S2D; Table S5). As previously

reported, we also observed that GATA6 suppresses the expres-

sion of a squamous-like molecular phenotype (Martinelli et al.,

2017); in particular, gene set enrichment analysis (GSEA) re-

vealed that loss of GATA6 in a progenitor genetic background

led to dysregulation of gene programs involved in extracellular

matrix organization and WNT ligand biogenesis and trafficking

(Figure S2D).HNF4A knockdown was associated with increased

ECARs indicative of increased glycolysis (Figure 3B; Table S5)

and induced dysregulation of the phosphatidylinositol 3-kinase

(PI3K)-AKT signaling pathway (Figures 3C and 3D). In particular,

HNF4A knockdown was associated with a reduction in DEPTOR

and an upregulation of WNT pathway signaling molecules

WNT5A, WNT5B, WNT7B, and WNT10B (Figure 3D). When

compared with the RNA-seq analysis of bulk tumors, HNF4A

reduction recapitulated expression signatures associated with
ncreatic) PDCLs

showing enrichment of transcripts in pathways important in mTOR signaling

cal (pancreatic) (orange) to most squamous (blue), using gene expression or

the heatmap.

from Bailey et al. (2016). Subtype classification is depicted by annotated colors

ated with immune infiltrate and shares transcriptional networks associated the

endocrine eXocrine subtype defined by transcriptional networks important for

ide biosynthesis. Genes are ranked by most differentially expressed between

r saturation proportional to degree of either classical or squamous enrichment,

nd TKCC-26) and classical (pancreatic) (TKCC-22, Mayo 5289, andMayo 4636)

o cell counts.

g Agilent Seahorse XF Glycolysis Stress Test.

PDCLs.

idification. Right: OCR values for cells treated as in (F) corrected for oxygen

plots are annotated using one-way ANOVA. Error bars represent mean ± SD.

te pathway enrichment analysis of significantly altered metabolites between
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Figure 2. Subtype-Specific Differences in Endodermal TF Expression

(A) Heatmap showing differential expression of regulatory genes central to pancreatic endodermal cell fate determination. Note loss of pancreatic transcripts

HNF4A and GATA6 in the squamous subtype indicated by RNA-seq analysis.

(B) Immunoblots of endodermal cell fate determining transcription factors across a selection of PDCLs representative of both classical (pancreatic) and squa-

mous subtypes. 20 mg of the same protein lysate was probed with stated antibodies on different blots. Actin panel is a representative loading control (HNF1A

loading shown).

(C) Plots showing regulation of gene expression by methylation. Methylation ofHNF4A (left) orGATA6 (right) is associated with the concordant downregulation of

the indicated gene expression. Pearson correlation and adjusted p values are provided for each gene methylation comparison. Boxplot colors designate class:

squamous (blue) and classical (pancreatic) orange.

(D) Schematic representation of where the selected classical (pancreatic) PDCLs rank in terms of subtype. Expression of genes involved in endodermal cell fate

was used to rank subtype.

See also Figure S2 and Table S1.
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the squamous subtype, such as WNT and insulin signaling and

PI3K-AKT activation (Figure 3D), suggesting that HNF4A loss

drives metabolic reprogramming at an early stage of PDAC pro-

gression. To investigate the sufficiency of HNF4A loss to install

squamous-like metabolic reprogramming, we further knocked

down HNF4A in the classical (pancreatic) PDCLs PacaDD137,

TKCC-22, and Mayo-4636 (Figure S3A; Table S5). HNF4A

knockdown in the further subset of classical (pancreatic) PDCLs

recapitulated our previous results andwas associated with an in-

crease in glycolysis.

Loss of HNF4A Activates a Gene Expression Program
that Favors Glycolysis
Rate-limiting enzymes that mediate glucosemetabolism such as

hexokinase I and II (HK1 and HK2) were significantly induced in

HNF4A knockdown PDCLs (Figures S3B and S3C). Increased

expression of these enzymes is associated with the squamous

subtype (Figure 3G). The gene encoding ALDOB, a glycolytic

enzyme that catalyzes the conversion of fructose-1,6-bisphos-

phate to glyceraldehyde-3-phosphate, decreased following

HNF4A knockdown (Figure S3B), and a high ratio of ALDOA rela-

tive to ALDOB expression is associated with poor patient prog-
nosis (Figure S3D). Furthermore, the AMP-activated protein ki-

nase (AMPK) catalytic subunit PRKAA1 was reduced following

HNF4A knockdown, with low expression also associated with

poor survival (Figures S3B and S3D).GSK3B, encoding a protein

kinase that acts as a regulator of glucose homeostasis (Reya and

Clevers, 2005) and WNT signaling (Wu and Pan, 2010), was also

significantly increased following HNF4A knockdown, with higher

protein expression also found to be associated with the squa-

mous subtype (Figures 3E–3H). In classical (pancreatic) PDCLs

with HNF4A knockdown, we consistently found increased

ECAR (Figures 3B and S3A; Table S5) and increased GSK3B

protein expression after HNF4A knockdown (Figures 3E and

3F). Collectively, these findings suggest that HNF4A loss can

mediate a switch toward a squamous subtype metabolic profile

and identify ALDOA, HK, and GSK3b as potential key molecular

regulators of glycolysis in squamous PDAC.

Targeting Glycolysis Shows Subtype Sensitivity in
Squamous PDCLs
To corroborate these findings and identify key metabolic vulner-

abilities that could be therapeutically targeted, we conducted an

siRNA-mediated gene silencing screen of metabolic targets in a
Cell Reports 31, 107625, May 12, 2020 5
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Figure 3. HNF4A Loss in Classical (Pancreatic) PDCLs Drives a Switch toward a Squamous-Associated Metabolic Profile

(A) Venn diagram showing the number of common and unique genes differentially expressed (p R 0.05, fold change R 2) after either HNF4A or GATA6

knockdown in the classical (pancreatic) Mayo 5289 PDCL.

(B) ECAR in classical (pancreatic) PDCLs following siRNA-mediated knockdown of HNF4A. Boxplots are annotated using one-way ANOVA, mean ± SD.

Technical replicates are shown, n R 6. For all graphs: **p % 0.01.

(C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of significantly altered pathways identified after HNF4A knockdown in

Mayo 5289 PDCL. Adjusted p value for each annotation is represented by color scale. Gene ratio is represented by dot size. Enriched terms and pathways were

identified as significant at an adjusted p value % 0.05 and FDR % 0.05.

(D) Comparison of molecular pathways identified in bulk tumor and PDCLs RNA-seq analysis with significant gene changes following HNF4A knockdown.

(E) Right: Mayo 5289 PDCLs treated with two independent HNF4A siRNA oligos for 72 h were immunoblotted with indicated antibodies. Left: transient or stable

HNF4A knockdown in PacaDD137 and Mayo 4636 PDCLs, respectively. Actin panel is a representative loading control (HNF4A loading shown).

(F) Stable HNF4A knockdown in Mayo 5289 PDCL immunoblotted with PI3K signaling proteins identified from RNA-seq analysis. Actin panel is a representative

loading control (HNF4A loading shown).

(legend continued on next page)
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subset of PDCLs (Figure S4A; Table S6). Consistent with our pre-

vious findings, metabolic dependencies in squamous PDCLs

were enriched for targets falling within glycolytic metabolic

pathways (Figures S4A–S4C). Targeted inhibition of glycolysis

using either glucose analog 2-deoxy-D-glucose (2-DG) or the

pentose phosphate pathway (PPP) inhibitor 6-aminonicotina-

mide showed subtype-specific sensitivity in squamous PDCLs

(Figure S4D).

With the objective of identifying therapeutically relevant tar-

gets, we selected GSK3b for further evaluation for the following

reasons: (1) the previously established role for GSK3b in glucose

homeostasis (Embi et al., 1980; Woodgett and Cohen, 1984),

and (2) we consistently observed increased GSK3B expression

and a concomitant induction of glycolysis following HNF4A

knockdown. Furthermore, multiple phase 2 clinical trials (Clini-

calTrials.org: NCT02586935, NCT01350362, NCT02858908) us-

ing GSK3b inhibitor tideglusib highlight the potential of this com-

pound to effectively treat PDAC. As predicted, squamous PDCLs

exhibited increased sensitivity to GSK3b inhibitors, TDZD-8 and

tideglusib, in comparison with classical (pancreatic) PDCLs (Fig-

ures 4A, 4B, and S4D; Table S6), and importantly, glycolysis was

selectively reduced in squamous PDCLs (Figures 4C–4E).

A Subset of Squamous PDCLs Acquires GSK3b Drug
Tolerance after Extended Suppression of Glycolysis
Recent reports have described adaptive metabolic networks

that can compensate for metabolic targeting in PDAC (Biancur

et al., 2017). To determine whether the anti-proliferative effects

of GSK3b are sustainable after prolonged treatment, we

extended our proliferation assays to 6 days. When comparing

72- and 144-h inhibitor incubations, we observed a significant in-

crease in the half maximal inhibitory concentration (IC50) values

for TDZD-8 and tideglusib in a subset of our squamous PDCLs

(Figures 4F and 4G; Table S6), despite the sustained inhibition

of glycolysis in these cells (Figures 4H and 4I). These data sug-

gest that a subset of our squamous PDCLs can adapt to chronic

suppression of glycolysis. We next sought to identify the molec-

ular mechanism regulating metabolic adaptation in a subset of

squamous PDCLs that enabled them to tolerate GSK3b

inhibition.

GSK3b inhibition can modulate autophagy by increasing the

LKB1-AMPK-ULK signaling pathway activity and induce drug

tolerance (Sun et al., 2016). Recent studies have also shown

that suppression of glycolysis via MAPK pathway inhibition in

PDAC can lead to a greater dependency on autophagy, and

that combinations targeting bothMAPK signaling and autophagy

synergistically suppress proliferation and induce apoptosis (Bry-

ant et al., 2019; Kinsey et al., 2019). To determine whether auto-

phagy was mediating GSK3b drug tolerance in this subset of

squamous PDCLs, we tested the expression of known auto-

phagy regulators AMPK and ULK after GSK3b inhibition. Indeed,

we observed an increase in active phospho-AMPK (Thr172) and
(G) A selection of PDCLs ranked from classical (pancreatic) to squamous immunob

(DEPTOR loading shown). For all blots in (E)–(G), 20 mg of the same protein lysat

(H) Correlation graph demonstrating a negative correlation of HNF4A expressio

Bailey et al. (2016) (left) and in PDCLs (right).

See also Figure S3 and Table S5.
phosphor-ULK (Ser555) suggesting activation of autophagy after

GSK3bi (Figure S5). However, combinatorial targeting of AMPK

(Dite et al., 2018) and ULK (Egan et al., 2015) with SBI-

0206965 and GSK3bi (TDZD-8 or tideglusib) resulted in only a

modest rescue in inhibitor sensitivity and failed to rescue drug

tolerance (Figure S5; Table S7). Only after high concentrations

of SBI-0206965 (Figure S5) was toxicity observed, suggesting

an alternative or additional mechanism for drug tolerance/

resistance.

ATAC-Seq and Transcriptomic Analysis Reveal a
Uniquely Accessible WNT Gene Program in the Drug-
Tolerant Squamous Subtype
In an effort to identify nodes of therapy resistance, we next

sought to establish what key differences exist between groups

of squamous PDCLs that show differential adaptation to

GSK3b-mediated suppression of glycolysis. Recent studies

have established that subtypes of PDAC are associated with

distinct epigenetic landscapes (Andricovich et al., 2018; Bailey

et al., 2016; Somerville et al., 2018), and that these chromatin

states may underpin PDAC heterogeneity (Lomberk et al.,

2018). Transcriptomic analysis of a human pancreatic tumor or-

ganoid library (PTOL) established that PDAC segregates into

three subtypes with distinct methylation patterns and depen-

dency on WNT niche signaling (Seino et al., 2018). Seino et al.

(2018) showed that a subgroup of PDAC organoids designated

as W+ had the ability to harness self-produced WNT ligands.

GSK3b plays a central role in the regulation of theWNT/b-catenin

signaling pathway. When the WNT ligand is present, it binds to

specific membrane-bound receptors. This binding in turn acti-

vates an intracellular signaling cascade, which ultimately results

in b-catenin stabilization and nuclear localization. In the nucleus,

b-catenin associates with members of the TCF/LEF family of

transcription factors to regulate the transcription of various

WNT targets. GSK3b phosphorylates b-catenin triggering its

degradation and consequently reducing b-catenin nuclear accu-

mulation (Reya and Clevers, 2005; Wu and Pan, 2010).

Given the established function of GSK3b as a negative regu-

lator of WNT-mediated b-catenin signaling (Aberle et al., 1997;

He et al., 1995; Huang et al., 2017), we hypothesized that

GSK3b inhibition may mimic WNT signaling through the direct

stabilization of b-catenin, providing a survival advantage in a

subset of cells capable of harnessing self-produced WNT li-

gands. We further reasoned that different chromatin landscapes

could exist between subtypes of squamous PDCLs that would

be predictive of those expected to attain drug tolerance and

may explain the observed heterogenous response to targeted

therapy. To address these questions, we performed an integra-

tive analysis of ATAC-seq and RNA-seq data from our PDCLs.

We first established whether our PDCLs and PDAC subtypes

expressed WNT ligands. Consistent with previous reports in

PDAC organoids (Seino et al., 2018), WNT5A, WNT7A,
lotted with indicated antibodies. Actin panel is a representative loading control

e was probed with stated antibodies on different blots.

n with glycolysis pathway expression from bulk tumor samples described by
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Figure 4. A Subset of Squamous PDCLs Acquires GSK3b Drug Tolerance after Chronic Suppression of Glycolysis

(A and B) Schematic of experimental setup (A) and dose-response curves (mean ± SD) (B) for classical (pancreatic) and squamous PDCLs treated with TDZD-8

(GSK3bi) or tideglusib (GSK3bi) for 72 h. Independent experiments are shown, n R 3. DMSO-treated cells were set to 100%.

(C and D) Experimental setup (C) and (top) representative Glyco Stress Test curves for (D) classical (pancreatic) or (bottom) squamous PDCLs.

(E) ECAR values (mean ± SD) after treatment with TDZD-8 or tideglusib for 4 h in classical (progenitor) and squamous PDCLs. Technical replicates are

shown, n R 5.

(F and G) Schematic of experimental setup (F) and comparison of IC50 values (mean ± SD) (G) after either 72- or 144-h treatment with either TDZD-8 (GSK3bi) or

tideglusib (GSK3bi) in PDCLs. Unpaired t test. Independent experiments are shown, n = 3.

(H and I) Schematic of experimental setup (H) and ECAR values (I) after 144-h treatment with either TDZD-8 (GSK3bi) or tideglusib (GSK3bi) in GSK3Bi-tolerant

squamous (TKCC-15, TKCC06, TKCC-18, and TKCC-26) PDCLs. Technical replicates are shown, n = 8. For all graphs: *p < 0.05; **p% 0.01; ***p% 0.001; ****p <

0.0001. Figure legend colors designate class: classical (pancreatic) = orange/brown; squamous = blue.

See also Figures S4 and S5 and Table S6.
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WNT7B, and WNT10A mRNA were highly expressed in PDCLs,

suggesting a tumor cell-intrinsic origin for these WNT ligands

(Figure 5A; Table S1). Furthermore, high expression of WNT7A,

WNT7B, and WNT10A in clinical PDAC samples (Bailey et al.,
8 Cell Reports 31, 107625, May 12, 2020
2016) was associated with poor survival (Figures 5B and 5C).

We next tested b-catenin protein stabilization after GSK3b inhi-

bition and as predicted found an increase in b-catenin protein

expression (Figure 5D). Importantly, treatment with the
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Figure 5. PDAC PDCLs Express WNT Ligands

(A) Heatmap showing mRNA expression of indicated WNT ligands in PDAC subtypes determined by RNA-seq analysis.

(B) Left: boxplots showing a significant association ofWNT7A,WNT7B, andWNT10A expression in the squamous subtype from RNA-seq analysis of bulk tumor

samples from Bailey et al. (2016). Kruskal-Wallis test. Right: boxplots showing WNT expression in the PDCLs. Wilcoxon test.

(legend continued on next page)
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porcupine inhibitor LGK-974 was able to reduce GSK3bi (TDZD-

8 and tideglusib)-mediated b-catenin stabilization, suggesting

that secretory WNT ligands are required to mediate this tran-

scriptional effect (Figure 5D). These results demonstrate that a

subset of PDAC PDCLs can autonomously activate WNT

signaling by expressing epithelial WNT ligands, which are also

predictive of clinical outcome.

With metabolic adaptation occurring only in a subset of squa-

mous PDCLs, we next explored whether further classification

based on GSK3b inhibitor response and chromatin accessibility

could identify responsive subgroups. To this end, we ranked

our PDCLs into three response groups: GSK3b non-responders

(PacaDD137, TKCC-22, Mayo 5289, and Mayo 4636), GSK3b

initial responders (TKCC-26, TKCC-06, TKCC-15, and TKCC-

18), and GSK3b responders (TKCC-10, TKCC-2.1, and TKCC-

09) (Figure 6A). Differential peak analysis of ATAC-seq was then

performed to identify chromatin accessibility regions exhibiting

significant change among the three GSK3bi response groups

(Figures 6B and 6C). Loss of chromatin accessibility proximal to

HNF4A andGATA6 gene loci was associated with a concomitant

increase in chromatin accessibility proximal to the WNT7A and

GSK3b gene loci (Figures 6C and 6D; Table S7). Direct compari-

son of chromatin accessibility at theWNT7A locus revealed that

the subset of squamous PDCLs that demonstrated acquired

resistance to GSK3b inhibition was enriched for both intronic

and distal promoter peaks (TKCC18, TKCC-06, TKCC-15, and

TKCC-26); however, loss of these peaks was observed in the

GSK3bi-sensitive subgroup (TKCC-10, TKCC-2.1, and TKCC-

09) (Figures 6C and 6D). In line with reports that squamous

PDACsubtypes relyon super-enhancers tomediate transcription

in a highly methylated chromatin landscape (Lomberk et al.,

2018; Somerville et al., 2018),weobserved that chromatin acces-

sibility peaks in the GSK3bi-sensitive subgroup were enriched

within distal elements, suggesting a role for super-enhancers in

regulating geneexpression in this subset of cells (Figure 6E; Table

S7). GSEA using intronic and distal peaks revealed that GSK3bi-

tolerant squamous PDCLs exhibit increased chromatin accessi-

bility in subsets of genes associated with WNT, PI3K-AKT, and

Hippo signaling (Figures 6F and S6A–S6F). WNT7A was a signif-

icant hit in this analysis (FiguresS6BandS6C). Collectively, these

data suggest that GSK3bi-tolerant squamous PDCLs have ac-

cess to an amplified WNT signaling program via application of

both intronic and distal promoter usage, which may contribute

to the acquired resistance toGSK3b inhibition observed in a sub-

group of the squamous PDCLs. We next tested our GSK3bi-

tolerant (TKCC-26 and TKCC-18) and -sensitive (TKCC-10 and

TKCC-2.1) squamous PDCLs with extended GSK3bi treatment,

and as predicted by the observed enrichment of chromatin

accessibility in these cells, WNT7A expression increased in the

GSK3bi-tolerant subgroup, but not the GSK3bi-sensitive sub-

group (Figure 6G).
(C) Kaplan-Meier plots showing overall survival based on data reported by Baile

(center), or WNT10A (right) expression. Blue shading represents patients with

represents patients with high WNT7A, WNT7B, or WNT10A expression, respecti

(D) Western blot for indicated targets in squamous PDCLs TKCC-26 and TKCC

(CHIR99021) was used as a positive control.

See also Figure S6.
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To identify putative transcriptional regulators enriched in re-

gions of differential chromatin accessibility, we performed tran-

scription factor motif analysis using HOMER (Heinz et al.,

2010). Consistent with our RNA-seq analysis and reports in

low-grade (Lo-G) PDAC (Diaferia et al., 2016), the GSK3bi-resis-

tant subgroup, which is composed of classical (pancreatic)

PDCLs, was enriched for TF motifs involved in endocrine speci-

fication, such as HNF6, HNF4A, and HNF1A (Figure S7A). The

GSK3bi-sensitive subgroup was enriched for Activating

Enhancer-Binding Protein 2 Gamma (AP-2 gamma) binding mo-

tifs. AP-2 is a transcription factor that facilitates the opening of

distal enhancer regions (Pastor et al., 2018) (Figure S7A), further

supporting the notion that squamous PDCLs rely on super-en-

hancers to mediate transcription. We next established which

TF motifs were enriched in the GSK3b drug-tolerant subgroup

(Figure S7A) with the further objective of identifying potential

TFs that regulate WNT expression. Using orthogonal measures

of motif enrichment, we identified RNA and protein expression

Activating Transcription Factor-3 (ATF-3) (Figures S7A–S7D;

Table S7) as a putative regulator of WNT gene expression in

PDAC. ATF-3 has previously been established as a regulator of

WNT ligand expression (Yan et al., 2011), suggesting ATF-3 as

a potential candidate for WNT7A regulation in the GSK3bi-

tolerant subgroup. Collectively, these data demonstrate that

chromatin accessibility can be used to stratify squamous

PDAC PDCLs into two subgroups that have differential access

to TF binding motifs.

Porcupine Inhibition Overcomes WNT-Driven Acquired
Resistance to GSK3b Inhibition in Squamous PDCLs
To determine whether dysregulation of PI3K signaling is associ-

ated with increased WNT expression, we utilized a previously

described GEMM of pancreatic cancer harboring an oncogenic

Kras mutation and deletion of Pten (KCPTEN) (Kennedy et al.,

2011;Morran et al., 2014). RNAscope analysis ofWnt7a revealed

that, similar to HNF4A/GATA6 loss in squamous PDCL (Fig-

ure 7B), an increase in PI3K signaling via phosphatase and tensin

homolog (PTEN) loss was associated with higher expression of

Wnt7a, and importantly, treatment with the porcupine inhibitor

LGK-974 was able to reduce Wnt7a expression (Figures 7A

and 7B; Table S7). These results demonstrate that activation of

the PI3K pathway is associated with an increase in WNT7A

expression, which can be suppressed by porcupine inhibition.

Having established that PDAC PDCLs can harness their own

WNT-mediated b-catenin signaling, and that GSK3b inhibition

amplifies this signaling in a subset of squamous PDCLs, we

next determined whether porcupine inhibitors could effectively

suppress WNT signaling in combination with GSK3b- and

AMPK-targeted therapy. In squamous PDCLs that had previ-

ously tolerated long-term GSK3b inhibition, porcupine inhibition

sensitized cells to GSK3b andULK inhibition (Figures 7D and 7E).
y et al. (2016). Tumor samples were stratified based on WNT7A (left), WNT7B

low WNT7A, WNT7B, or WNT10A expression, respectively. Yellow shading

vely. Log rank p value.

-18 after 24 h GSK3bi (tideglusib or TDZD-8) ± PORCN (LGK-974). GSK3a/b
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Figure 6. ATAC-Seq and Transcriptomic Analysis Revealed aUniquely AccessibleWNTGene Program in Squamous PDCLs that Are Tolerant

to GSK3B Inhibition

(A) Western blot (WB) for either HNF4A or GATA6 in representative PDCLs of the classical (pancreatic) or squamous subtype. 20 mg of the same protein lysate was

probed with stated antibodies on different blots. Actin panel is a representative loading control (HNF4A loading shown). (Above) Oncoplot showing somatic

mutations in genes involved in chromatin regulation. Green = structural variant (SV); purple = single-nucleotide variant (SNV) or indel.

(B) Venn diagram showing the number of common and unique annotated gene peaks in PDCLs grouped by response to GSK3bi. GSK3bi resistant = PacaDD137,

TKCC-22, Mayo 5289; GSK3bi tolerant = TKCC-26, TKCC-06, TKCC-15, TKCC-18; GSK3bi sensitive = TKCC-09, TKCC-10, TKCC-2.1.

(C) ATAC-seq density plots of accessible genes in 10 PDCLs representative of the classical (pancreatic) or squamous subtypes.

(D) ATAC-seq genomic tracks for WNT7A. Highlighted regions show subtype-specific genomic peaks. PDCLs are grouped based on response to GSK3b in-

hibitor.

(E) Chart showing the genomic distribution of ATAC-seq peaks in squamous PDCLs that are sub-grouped based on response to GSK3bi.

(F) KEGG pathway enrichment analysis of enriched pathways accessible in GSK3b-tolerant squamous PDCLs found at intronic and distal promoter sites.

(G) WNT7A expression in squamous PDCLs treated with GSK3b (TDZD-8) for 144 h. For all graphs: **p < 0.01; ***p < 0.0001.

See also Figures S6 and S7 and Table S7.
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Figure 7. Porcupine Inhibition Overcomes WNT-Driven Acquired Resistance to GSK3b Inhibition

(A) RNAscope hybridization for Wnt7a in PDAC GEMM KPC, KC Ptenfl/+, and KPC + LGK974 (porcupine inhibitor). Nuclear counterstaining is with hematoxylin.

The scale bar represents 100 mm.

(B) Quantification of samples described in (A) using HALO software.

(C) Correlation graph demonstrating a positive correlation of PI3K-AKT activation with WNT signaling in the squamous subtype from bulk tumor samples

described by Bailey et al. (2016).

(D) Schematic of experimental setup.

(E) Indicated PDCLs treated with either GSK3bi (tideglusib or TDZD-8), AMPKi/ULKi (SBI), or Porcupine-I (LGK974) alone or in combination for 144 h before cell

number analysis.

(F) GSK3b-sensitive squamous PDCLs (TKCC-10, TKCC-2.1, and TKCC-09) were treatedwithGSK3b (TDZD-8) for 144 h. Note that these cells remain sensitive to

GSK3b (TDZD-8)-targeted therapy.

**p % 0.01; ***p % 0.001. See also Table S7.
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Combination treatment resulted in a reduction of cell prolifera-

tion and induced cytotoxicity (Figures 7D–7F; Table S7).

DISCUSSION

Prior studies have shown that PDAC is composed of two broad

transcriptomic subtypes, and that these subtypes are character-

ized by unique chromatin landscapes (Bailey et al., 2016; Collis-

son et al., 2019). We show that chromatin accessibility is an

important and largely undescribed biomarker for the delineation

of therapeutic subtypes that are otherwise indistinguishable by

transcriptomic analysis.

Due to the lack of defined genetic mutations or biomarkers in

PDAC that are predictive of therapeutic response to targeted

therapies, and the observed differential response to glycolysis
12 Cell Reports 31, 107625, May 12, 2020
inhibition with metabolic adaptation in a subset of squamous

PDCLs, we reasoned that stratification of PDAC using chromatin

accessibility maps and transcriptomic data represents a method

to identify patients who would respond to therapies targeting

metabolism. ATAC-seq identified amplifiedWNT signaling via in-

tronic and distal promoter usage in a subset of the squamous

PDCLs. Importantly, this analysis and other recent studies

demonstrate that the squamous subtype can be stratified into

additional subgroups that may inform response to therapy

(Chan-Seng-Yue et al., 2020). Accordingly, deeper analysis of

chromatin accessibility profiles may reveal further therapeuti-

cally relevant subgroups in PDAC. A chromatin-mediated drug-

tolerant state in cancer subpopulations has previously been

describedwhere inhibition of HDAC activity prevented the devel-

opment of drug resistance. The histone demethylase KDM5A
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was found to be required for drug tolerance, suggesting that mu-

tations in chromatin-modifying complexes would be expected to

reduce plasticity. Indeed, the TKCC-10 and TKCC-2.1 PDCLs,

which remained sensitive to targeted therapy, have a high chro-

matin modifier mutational burden (Table S4). The chromatin

modifier KDM6A, which has been implicated in the progression

of squamous PDAC (Andricovich et al., 2018), is a common mu-

tation shared by GSK3b inhibitor-sensitive PDCLs, and in keep-

ingwith reported findings, we observe squamous-like pancreatic

cancer in these PDCLs despite the presence of GATA6.

Recent evidence also demonstrates that novel GSK-3 inhibitor

9-ING-41, which is currently being evaluated in a phase I/II trial in

patients with advanced cancer, can inhibit the growth of PDAC

cells in vitro and xenografts in vivo. Importantly, 9-ING-41 sensi-

tizes PDAC cells to gemcitabine by short-circuiting the ATR/

Chk1 DNA damage response signaling pathway, providing a

rationale for treatment regimens comprising specific GSK3 in-

hibitors in combination with standard-of-care chemotherapies

such as gemcitabine and Abraxane (Ding et al., 2019). In addi-

tion, early results from the COMPASS trial suggest that first-

line chemotherapy is associated with significantly better out-

comes in patients with tumors falling within the classical PDAC

RNA subtype (Aung et al., 2018). Based on these findings, opti-

mum strategies for GSK3B stand-alone and/or combination

therapies should include an assessment of PDAC RNA subtype

and/or PDAC chromatin accessibility.

We demonstrated that plasticity exists between subtypes, and

that siRNA-mediated loss of HNF4A and GATA6 can drive re-

programming from a classical (pancreatic) to predominantly

squamous-associated transcriptional signature. The squamous

subtype is associated with high mutational burden and a multi-

tude of chromosomal rearrangements (Bailey et al., 2016); there-

fore, reverting this subtype back to a progenitor-associated

phenotype would be expected to be more challenging than pro-

moting a switch from classical (pancreatic) to squamous. How-

ever, under certain circumstances, reprogramming from a pre-

dominantly squamous to classical (pancreatic) subtype has

been observed; for example, targeted ablation of myeloid cells

in KPC GEMMs by the selective inhibition of CSF1R produces

a profound shift in subtype (Candido et al., 2018). These data

highlight an important paracrine role for the stroma in pancreatic

cancer (PC). Likewise, stromal cues have been shown to drive

distinct changes in tumor cell metabolic pathways and to re-pro-

gram the tumor epigenome (Sherman et al., 2017). Whether a

stroma contribution to therapy-sensitive PDCLs (TKCC-10 and

TKCC-2.1) would induce drug tolerance is yet to be determined.

Establishing whether a persisting subpopulation of PDAC cells

contributes to resistance to targeted therapy or whether dy-

namic fluctuations of protein expression at the single-cell level

explain the development of therapeutic resistance remains un-

answered. Future studies will be directed at understanding

how therapy-induced tumor evolution or cell population selec-

tion evolves at the single-cell level, and how enhancer and chro-

matin reprogramming participate in mediating drug tolerance.

Identifying key regulators of these switching events could ulti-

mately prevent therapy-induced tumor evolution. Predicted tar-

gets are expected to be directed toward chromatin remodelers

and transcriptional enhancers.
Apatient selection strategy based on chromatin profiling could

identify patients for GSK3b-targeted therapy. The squamous

PDCLs that remained sensitive to GSK3b inhibition have muta-

tions in LRP6 (TKCC-2.1), LKB1 (TKCC-10), and chromatin mod-

ifiers KDM6A, ARID1A, SETD2, SETBP1, and MLL3 (Table S6).

LRP6 is a receptor that transduces WNT-mediated signaling

through the canonical WNT pathway (Garg et al., 2017), and

LKB1 is a protein kinase responsible for activating AMPK

(Shackelford and Shaw, 2009). This suggests that both func-

tional WNT and AMPK signaling are required to mediate

GSK3b inhibitor tolerance; therefore, patients identified as squa-

mous, with a chromatin profile that promotes distal promoter us-

age, possibly KDM6A mutant, and harboring either LRP6 or

LKB1 mutations would be predicted to maintain sensitivity to

GSK3b-targeted monotherapy.
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Antibodies

HNF1A (D7Z2Q) Rabbit mAb Cell signaling Technology Cat# 89670S; RRID:AB_2728751

HNF4A (C11F12) Rabbit mAb Cell signaling Technology Cat# 3113; RRID:AB_2295208

GATA6 Rabbit polyclonal Abcam Cat# ab22600; RRID:AB_732529

Phospho-AMPK⍺ (Thr172) (40H9) Rabbit

mAb

Cell signaling Technology Cat# 2535; RRID:AB_331250

GSK-3b (D5C5Z) XP Rabbit mAb Cell signaling Technology Cat# 12456; RRID:AB_2636978

DEPTOR (D9F5) Rabbit mAb Cell signaling Technology Cat# 11816; RRID:AB_2750575

Hexokinase II (C64G5) mAb Cell signaling Technology Cat# 2867; RRID:AB_2232946

AMPK (D63G4) Rabbit mAb Cell signaling Technology Cat# 5832; RRID:AB_10624867

Phospho-ULK1 (Ser555) (D1H4) Rabbit

mAb

Cell signaling Technology Cat# 5869; RRID:AB_10707365

Phospho-GSK3B (Ser9) (D85E12) XP

Rabbit mAb

Cell signaling Technology Cat# 5558; RRID:AB_10013750

B-catenin (clone 14) Mouse BD Biosciences Cat# 610153; RRID:AB_397554

LKB1 (27D10) Rabbit mAb Cell signaling Technology Cat# 3050; RRID:AB_823559

ULK1 (D9D7) Rabbit mAB Cell signaling Technology Cat# 6439; RRID:AB_11178933

ATF-3 Cell signaling Technology Cat# 33593; RRID:AB_2799039

LC3B Cell signaling Technology Cat# 2775S; RRID:AB_915950

Bacterial and Virus Strains

TRC Lentiviral Human HNF4A shRNA,

Clone ID TRCN0000019189

Horizon Dharmacon Cat# RHS3979-201750396

TRC eGFP shRNA positive control Horizon Dharmacon Cat #RHS4459

psPAX2 lentiviral packaging plasmid Addgene Cat #12260

pMD2.G (VSV-G envelope expressing

plasmid)

Addgene Cat #12259

Biological Samples

TKCC PDCLs The TKCC patient derived cell lines were

provided by the Australian Pancreatic

Cancer Genome Initiative (APGI, https://

www.pancreaticcancer.net.au/) and the

Garvan Institute of Medical Research

(Sydney, Australia).

Hardie et al. (2017). DOI 10.1186/

s40170-017-0164-1

PacaDD PDCLs The PacaDD patient derived cell lines were

provided by Universitätsklinikum Erlangen.

R€uckert et al. (2012). https://doi.org/10.

1016/j.jss.2011.04.021

HEK293T American Type Culture Collection Cat# ATCC CRL-11268

Chemicals, Peptides, and Recombinant Proteins

6-Aminonicotinamide USBiological life sciences Cat# 258294

Dorsomorphin HCl (AMPKi) Enzo Cat# ENZ-CHM141-0005

TDZD-8 Sigma Cat# T8325

D-GLUCOSE (U-13C6, 99%) Cambridge Isotope Laboratories Cat# CLM-1396-PK

Tideglusib Stratec Cat# B1539-APE

SBI-0206965 Stratec Cat# S7885-SEL

LGK974 Selleckchem Cat# S7143

Apo-Transferrin Sigma-Aldrich Cat# T1147

D-(+)-Glucose Solution Sigma-Aldrich Cat# G8644
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DMEM/F12 GIBCO Cat# 11320-033

Dulbecco’s PBS GIBCO Cat# 14190094

EGF Recombinant Human Protein GIBCO Cat# PHG0311L

Fetal Bovine Serum (FBS) GIBCO Cat# 10270106

Ham’s F12 Nutrient Mixture GIBCO Cat# 21765-029

HEPES Buffer Solution GIBCO Cat# 15630-049

Hydrocortisone Sigma-Aldrich Cat# H0888

IMDM GIBCO Cat# 21980-065

Insulin, Human Recombinant GIBCO Cat# 12585014

L-Glutamine GIBCO Cat# 25030024

Medium M199 GIBCO Cat# 31150-022

MEM Vitamins GIBCO Cat# 11120037

MycoAlert Mycoplasma Detection Kit Lonza Cat# LT07-318

O-phosphorylethanolamine Sigma-Aldrich Cat# P0503

RPMI 1640 Medium GIBCO Cat# 21875034

3,30,5-Triiodo-L-thyronine Sigma-Aldrich Cat# T6397

0.5% Trypsin (10X) GIBCO Cat# 15400054

2-Deoxy-D-Glucose Sigma-Aldrich Cat# D8375

Oligomycin Sigma-Aldrich Cat# O4876

Crystal Violet Solution Sigma-Aldrich Cat# V5265

Lipofectamine RNAiMAX Transfection

Reagent

ThermoFisher Scientific Cat# 13778075

Lipofectamine 2000 Transfection Reagent ThermoFisher Scientific Cat# 11668027

Polybrene Transfection Reagent Millipore Cat # TR-1003-G

SYBR Select master Mix ThermoFisher Cat# 4472903

Critical Commercial Assays

CellTiter 96� AQueous Non-Radioactive

Cell Proliferation Assay (MTS)

Promega Cat# G5430

Pierce BCA Protein Assay Kit Thermo Scientific Cat# 23227

Pierce ECL Western Blotting Substrate Thermo Scientific Cat# 32106

Seahorse XF Palmitate-BSA FAO Substrate Agilent Cat# 102720-100

L-Lactate Assay Kit Abcam Cat# ab56331

Glucose Uptake Assay Kit Abcam Cat# ab136955

Seahorse XF glycolysis stress test kit Aglient Cat# 103030-100

Seahorse XFe96 FluxPaks Agilent Cat# 102416-100

RNeasy Mini Kit QIAGEN Cat# 74104

Illumina Tagment DNA TDE1 Enzyme and

Buffer kit

Illumina Cat# 20034197

MinElute PCR Purification Kit QIAGEN Cat# 28004

NEBNext High-Fidelity 2X PCR Master Mix New England Biolabs Cat# M0541S

Agencourt AMPure XP beads fisher scientific Cat# 10136224

Bioanalyzer DNA analysis Agilent Cat# 5067

AffinityScript Multiple temperature cDNA

synthesis kit

Agilent Technologies Cat# 200436

Deposited Data

Human Pancreatic Cancer DNA and RNA-

seq data

Bailey et al. (2016). https://doi.org/10.1038/

nature16965

European Genome-phenome Archive

(EGA): accession code EGAS00001000154
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Human Pacreatic Cancer gene expression

and genotyping data

Bailey et al. (2016). https://doi.org/10.1038/

nature16965

NCBI Gene Expression Omnibus (GEO)

under accession codes GSE49149 and

GSE36924

Human Pancreatic Cancer PDCLATAC-seq

sequencing data

This paper BioProject: PRJNA630992

Tables S1, S2, S3, S4, S5, S6, and S7 This paper https://dx.doi.org/10.17632/74s7crj7xj.1

Experimental Models: Organisms/Strains

Pdx1-Cre, LSL-KrasG12D Hingorani et al. (2005) DOI:10.1016/j.ccr.2005.04.023

Ptenfl and LSL-Trp53R172H Kennedy et al. (2011) DOI:10.1016/j.molcel.2011.02.020

Oligonucleotides

ON-TARGETplus Non-targeting Pool/

siRNA #1

Dharmacon Cat# D-001810

ON-TARGETplus HNF4A SMARTpool

siRNA

Dharmacon Cat# L-003406-00

Hs_GAPDH_1_SG QuantiTect Primer QIAGEN Cat# QT00079247

Hs_WNT7A_1_SG QuantiTect Primer QIAGEN Cat# QT00012278

Hs_LGR5_1_SG QuantiTect Primer Assay QIAGEN Cat# QT00027720

Hs_AXIN2_1_SG QuantiTect Primer Assay QIAGEN Cat# QT00037639

ON-TARGETplus Human HNF4A (3172)

siRNA - Individual

horizon Cat# J-003406-08-0002

ON-TARGETplus Human HNF4A (3172)

siRNA - Individual

horizon Cat# J-003406-09-0002

ON-TARGETplus Human GATA6

SMARTpool siRNA

Dharmacon Cat# L-008351-00-0005

Software and Algorithms

Dnet Hai Fang and Julian Gough https://cran.r-project.org/web/packages/

dnet/index.html

ClueGo Cytoscape Bindea et al., 2009 http://apps.cytoscape.org/apps/cluego

CluePedia Cytoscape Bindea et al., 2013 http://apps.cytoscape.org/apps/cluepedia

RedeR Castro et al., 2012 https://bioconductor.org/packages/

release/bioc/html/RedeR.html

MACS2 Zhang et al., 2008 https://taoliu.github.io/MACS/

Cytoscape Shannon et al., 2003 https://cytoscape.org/

ComplexHeatmap Gu et al., 2016 https://bioconductor.org/packages/

release/bioc/html/ComplexHeatmap.html

Ggpubr CRAN https://cran.r-project.org/web/packages/

ggpubr/index.html

Seaborn python https://seaborn.pydata.org/

Ggfortify Tang et al., 2016 https://cran.r-project.org/web/packages/

ggfortify/index.html

ggplot2 Wickham, 2009 https://cran.r-project.org/web/packages/

ggplot2/index.html

qSV omicX https://omictools.com/qsv-tool

qSNP omicX https://omictools.com/qsnp-tool

GATK Broad Institute https://gatk.broadinstitute.org/hc/en-us

Pindel Sanger https://github.com/genome/pindel

HOMER Heinz et al., 2010 http://homer.ucsd.edu/homer/

STRING Szklarczyk et al., 2015 https://string-db.org/cgi/input.pl

ChipSeeker Yu et al., 2015 https://bioconductor.org/packages/

release/bioc/html/ChIPseeker.html

RSEM Li and Dewey, 2011 https://deweylab.github.io/RSEM/
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STAR Dobin et al., 2013 https://code.google.com/archive/p/

rna-star/

ChAMP Morris et al., 2014 https://bioconductor.org/packages/

release/bioc/html/ChAMP.html

Gviz Hahne and Ivanek, 2016 https://bioconductor.org/packages/

release/bioc/html/Gviz.html

DiffBind Ross-Innes et al., 2012 https://bioconductor.org/packages/

release/bioc/html/DiffBind.html

Clipper Martini et al., 2020 https://bioconductor.org/packages/

release/bioc/html/clipper.html

Genefu//// Gendoo et al., 2020 https://www.bioconductor.org/packages/

release/bioc/html/genefu.html

GSVA Hänzelmann et al., 2013 https://bioconductor.org/packages/

release/bioc/html/GSVA.html

ConsensusClusterPlus Wilkerson and Hayes, 2010 http://bioconductor.org/packages/release/

bioc/html/ConsensusClusterPlus.html
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagent should be directed to and will be fulfilled by the Lead Contact, Dr Peter

Bailey. Distribution of Mayo and PacaDD PDCLs are restricted by Material Transfer Agreements (MTAs). TKCC PDCLs are available

upon request from the Australian Pancreatic Cancer Genome Initiative (APGI) at https://www.pancreaticcancer.net.au/

bioresource-pdcls/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
APGI: Sydney South West Area Health Service Human Research Ethics Committee, western zone (protocol number 2006/54); Syd-

ney Local Health District Human Research Ethics Committee (X11- 0220); Northern Sydney Central Coast Health Harbour Human

Research Ethics Committee (0612- 251M); Royal Adelaide Hospital Human Research Ethics Committee (091107a); Metro South Hu-

man Research Ethics Committee (09/ QPAH/220); South Metropolitan Area Health Service Human Research Ethics Committee (09/

324); Southern Adelaide Health Service/Flinders University Human Research Ethics Committee (167/10); Sydney West Area Health

Service Human Research Ethics Committee (Westmead campus) (HREC2002/3/4.19); The University of Queensland Medical

Research Ethics Committee (2009000745); Greenslopes Private Hospital Ethics Committee (09/34); North Shore Private Hospital

Ethics Committee. Johns Hopkins Medical Institutions: Johns Hopkins Medicine Institutional Review Board (NA00026689). Ethik-

kommission an der Technischen Universität Dresden (Approval numbers EK30412207 and EK357112012). University of Michigan

Institutional Review Board (HUM00025339). Mayo Clinic Institutional Review Board (# 66-06)

Cell Lines
Patient derived cell lines (PDCLs) were generated as previously described (Chou et al., 2018; Pal et al., 2014; R€uckert et al., 2012;

Waddell et al., 2015). PDCLs were cultured in conditions specifically formulated for each individual line based on growth prefer-

ences and those resulting in cell lines that most closely resembled physiological cells from the initial tumor. Detailed culture media

formulations for TKCC PDCLs are previously described in Hardie et al. (2017). Mayo PDCLs were cultured in DMEM/F12 (Life tech-

nologies, #11320-074) supplemented with 10% FBS (ThermoFisher Scientific, #SH30084.03) and 15mM HEPES (Life technologies,

#15630-049). PacaDD lines were grown in DMEM (Life technologies, #41965-039), 10% FBS and KSFM formulation (Life technol-

ogies, #17005-059, Life technologies, #37000-015). Cells were grown in a humidified environment with either 5% or 2% O2. All cell

lines were profiled by short tandem repeat (STR) DNA profiling as unique (CellBankaustralia.com). Cell lines were tested routinely

for mycoplasma contamination using MycoAlert PLUS Mycoplasma Detection Kit (Lonza, #LT07 – 318). Information on the sex of

the PDCLs is not available. HEK293T cells were obtained from the American Type Culture Collection (ATCC CRL-11268) and main-

tained in DMEM (Life Technologies, #11960044) supplemented with 10% FBS and 2mM L-glutamine (Life Technologies,

#25030081).
Cell Reports 31, 107625, May 12, 2020 e4

https://www.pancreaticcancer.net.au/bioresource-pdcls/
https://www.pancreaticcancer.net.au/bioresource-pdcls/
http://CellBankaustralia.com
https://code.google.com/archive/p/rna-star/
https://code.google.com/archive/p/rna-star/
https://bioconductor.org/packages/release/bioc/html/ChAMP.html
https://bioconductor.org/packages/release/bioc/html/ChAMP.html
https://bioconductor.org/packages/release/bioc/html/Gviz.html
https://bioconductor.org/packages/release/bioc/html/Gviz.html
https://bioconductor.org/packages/release/bioc/html/DiffBind.html
https://bioconductor.org/packages/release/bioc/html/DiffBind.html
https://bioconductor.org/packages/release/bioc/html/clipper.html
https://bioconductor.org/packages/release/bioc/html/clipper.html
https://www.bioconductor.org/packages/release/bioc/html/genefu.html
https://www.bioconductor.org/packages/release/bioc/html/genefu.html
https://bioconductor.org/packages/release/bioc/html/GSVA.html
https://bioconductor.org/packages/release/bioc/html/GSVA.html
http://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
http://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html


Article
ll

OPEN ACCESS
In vivo animal studies
Pdx1-Cre, LSL-KrasG12D, Ptenfl, and LSL-Trp53R172H mice have been described previously (Hingorani et al., 2005; Kennedy et al.,

2011). Mice on a mixed strain background were kept in conventional animal facilities and experiments carried out in compliance with

UK Home Office guidelines and approved by the University of Glasgow Animal Welfare and Ethical Review Board. Mice were gen-

otyped by Transnetyx (Cordova, Tennessee, USA). Adult mice of both sexes were used in studies. Mice were treated with 5mg/kg

LGK974 in 0.5% methylcellulose / 0.5% Tween 80, p.o. BID. Animals were sacrificed as per institutional guidelines, and tissues

removed and fixed in 10% buffered formalin.

METHOD DETAILS

Western blotting
Protein lysates were harvested in RIPA lysis buffer supplemented with PhosSTOP easypack (Roche, #04906845001) and cOmplete

Protease Inhibitor Cocktail (Roche, #4693116001) and quantified using Pierce BCA protein assay kit (ThermoFisher, #23225).

Following SDS-PAGE, proteins were transferred to Nitrocellulose membranes (Amersham Biosciences, #45-001-227). To block,

membranes were incubated in Tris-buffered saline (TBS) containing 5% BSA (Sigma, #A7906) and 0.1% Tween 20 (TBS-T) for 1hr

before incubation with the primary antibody overnight at 4�. Membranes were then washed with TBS-T followed by incubation

with secondary antibodies (Anti-Mouse IgG, Jackson ImmunoResearch #715-035-150, anti-Rabbit IgG Jackson ImmunoResearch

#111-035-144) for 1hr at room temperature. Membranes were visualized using Pierce ECL western blotting substrate (ThermoFisher

Scientific, Cat #32106) on BioRad chemiDocMP Imaging system. Antibodies used are listed in STARMethods Key Resources Table.

Nucleic acid extraction
DNA and RNA extractions were performed using QIAGEN DNeasy Blood & Tissue kit (Cat #69504) or QIAGEN RNeasy Mini kit (Cat

#74104) respectively, according to manufacturer’s specifications.

Quantitative RT-PCR
cDNA was synthesized according to AffinityScript Multiple temperature cDNA synthesis kit instructional manual (Agilent Technolo-

gies, Cat #200436). Quantitative reverse transcription (RT)-PCR analyses were performed using SYBR Select Master Mix (Thermo-

Fisher, Cat #4472903) according to reference manual and signals were acquired using QuantStudio 3 (ThermoFisher Scientific).

GAPDH mRNA levels were used for data normalization. Each experiment was performed in triplicate. The primers used for quanti-

tative RT-PCR are listed in the Key Resources Table.

Whole-genome library preparation
Whole-genome libraries were generated using either the Illumina TruSeq DNA LT sample preparation kit (Illumina, Part no. FC-121–

2001 and FC-121–2001) or the Illumina TruSeq DNA PCR-free LT sample preparation kit (Illumina, Part no. FC-121–3001 and FC-

121–3002) accord- ing to the manufacturer’s protocols with some modifications (Illumina, Part no. 15026486 Rev. C July 2012

and 15036187 Rev. A January 2013 for the two different kits respectively). For the TruSeq DNA LT sample preparation kit, 1 mg of

gDNA was used as input for fragmentation to �300 bp, followed by a SPRI-bead clean up using the AxyPrep Mag PCR Clean-Up

kit (Corning, Part no. MAG-PCR-CL-250). After end-repair, 3ʹ adenylation and adaptor ligation, the libraries were size- selected using

a double SPRI-bead method to obtain libraries with an insert size �300 bp. The size-selected libraries were subjected to 8 cycles of

PCR to produce the final whole-genome libraries ready for sequencing. For the TruSeq DNA PCR- free LT sample preparation kit,

1 mg of gDNA was used as input for fragmentation to �350 bp, followed by an end-repair step and then a size-selection using the

double SPRI-bead method to obtain libraries with an insert size �350 bp. The size- selected libraries then underwent 3ʹ adenylation
and adaptor ligation to produce final whole genome libraries ready for sequencing. Prior to sequencing, whole- genome libraries were

qualified via the Agilent BioAnalyzer 2100with the High Sensitivity DNA Kit (Agilent, Part no. 5067–4626). Quantification of libraries for

clustering was performed using the KAPA Library Quantification Kit - Illumina/ Universal (KAPA Biosystems, Part no. KK4824) in com-

bination with the Life Technologies Viia 7 real time PCR instrument.

RNA sequencing library generation and sequencing
RNA-seq libraries were generated as described in TruSeq Stranded Total RNA Sample Preparation Guide (illumina, part no.

15031048 Rev. E October 2013) using Illumina TruSeq Stranded Total RNA LT sample preparation kit. Ribosomal depletion step

was performed on 500 ng of total RNA using Ribo- Zero Gold (Illumina, 20020598 and 20020492) followed by a 8 min heat fragmen-

tation step aimed at producing libraries with an insert size between 120bp-200bp. First strand cDNA was synthesized from the en-

riched and fragmented RNA using SuperScript II Reverse Transcriptase (Thermofisher, 18064014) and random primers. Second

strand synthesis was performed in the presence of dUTP. Following 30 adenylation and ligation of adaptors to the dsDNA, libraries

were subjected to 13 cycles of PCR. RNA-seq libraries were quantified using PicoGreen assay (Thermofisher, P11496) and sized and

qualified using an Agilent 4200 TapeStation with Agilent D1000/High sensitivity ScreenTape (Agilent, 5067-5584). Libraries were

normalized to 4nM and pooled before clustering using a cBot2 followed by 75bp paired-end sequencing on a HiSeq 4000 sequencer

(illumina). PDCL normalized RNA expression data is provided in Table S1.
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Library sequencing
All libraries were sequenced using the Illumina HiSeq 2000/2500 systemwith TruSeq SBS Kit v3 - HS (200-cycles) reagents (Illumina,

Part no. FC-401-3001), to generate paired-end 101 bp reads.

Copy number analysis
Matched tumor and normal patient DNA was assayed using Illumina SNP BeadChips as per manufacturer’s instructions (Illumina,

San Diego CA) (HumanOmni1-Quad or HumanOmni2.5–8 BeadChips) and analyzed as previously described. PDCL copy number

variance is provided in Table S4.

Identification and verification of structural variants
The Somatic structural variant pipeline was identified using the qSV tool. A detailed description of its use has been recently published

(Nones et al., 2014; Waddell et al., 2015). PDCL mutations are provided in Table S4.

Identification of and verification of point mutations
Substitutions and indels were called using a consensus calling approach that included qSNP, GATK and Pindel. The details of call

integration and filtering, and verification using orthogonal sequencing and matched sample approaches are as previously described

(Nones et al., 2014; Waddell et al., 2015).

Mutational signatures
Mutational signatures were defined for genome-wide somatic substitutions, as previously described (Waddell et al., 2015).

Metabolite measurements
Steady state metabolomics experiments were performed in cell lines grown to �80% confluence on 6cm dishes in biological tripli-

cate. Polar and nonpolar metabolites were extracted using Chloroform:Methanol:Water (1:3:1) extraction at 4�. Samples were placed

on a rocker for 1hr at 4� then vortex at 4� for 5 minutes, followed by centrifugation at 13,000 g for 3 minutes at 4�. Supernatant was

stored at �80� until ready for analysis. Metabolite levels were analyzed by Hydrophilic interaction liquid chromatography (HILIC) on

the Dionex UltiMate 3000 RSLC system (ThermoFisher Scientific, Hemel Hemstead, UK) using a ZIC-pHILIC column (150mm x

4.6mm x 5 mM) (Merck). The column was maintained at 30� and samples were eluted with a linear gradient (20mM ammonium car-

bonate in water, and acetonitrile) over 26 mins at a flow rate of 300uL/min. Instrument .raw files were converted to positive and nega-

tive ionisation mode mzXML files. These files were then analyzed using the XCMS/MZMatch/IDEOM pipeline (Creek et al., 2012).

PDCL metabolomic measurements are provided in Table S2.

Extracellular Metabolic Flux Assays
Measurements of extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were obtained utilizing the Seahorse

XFe96 Analyzer (Seahorse Biosciences) as previously described (Pike Winer and Wu, 2014). In brief, cells were seeded in their

respective, fully supplemented medium at a range of densities optimized for each PDCL. 45 minutes prior to starting the assay, cells

were equilibrated in seahorse XF DMEM media (Agilent, cat# 103575-100) supplemented with 2mM L-glutamine at 37�C in a non-

CO2 incubator. During the assay, indicated compounds were injected into wells at 18-minute intervals. All results were normalized

to total cellular protein content per well by RIPA extraction followed quantification with BCA protein assay kit (ThermoFisher Scien-

tific, #23227,) in a 96-well format, with absorbance measured using a Tecan Infinite 200 plate-reader.

Glycolysis Stress Test
This assay was initiated in the absence of glucose, with 10 mM glucose, 2.5 mMof Oligomycin (O4876, Sigma-Aldrich) and 50 mM 2-

DG (Sigma-Aldrich, #D8375) sequentially added to generate a profile of glycolysis under various conditions, as described previously

(Pike Winer and Wu, 2014). PDCL ECAR values after the glycolysis stress test are provided in Table S3. PDCL ECAR values after

GSK3bi are provided in Table S6.

FAO Assay
This assay functions as an extension to the Mitochondrial Stress Test described by Seahorse Biosciences. In order to stimulate con-

sumption of endogenous fatty acid (FA) reserves, 24-hours prior to beginning this assay, cells were cultured in substrate limited me-

dia: DMEM (cat# A1443001) supplemented with 0.5mM glucose, 0.5mM L-carnitine (Sigma-Aldrich, #C0283) and 1% FBS. FAOwas

quantified as ameasurement of OCR upon treatment of cells with either 40 mMFAO inhibitor Etomoxir (Sigma-Aldrich, #E1905) or the

FA-palmitate, purchased as Seahorse XF Palmitate-BSA FAO Substrate (Seahorse Biosciences, #102720- 100), as described pre-

viously (PikeWiner andWu, 2014). Initial OCR readings of the assay represent basal levels of respiration in the PDCLs, with sequential

additions of 2.5 mMOligomycin, 1.6 mMCCP (Sigma-Aldrich, #C2759) and a 1 mMcombination of Antimycin (Sigma-Aldrich, #A8674)

and Rotenone (Sigma-Aldrich, #R8875) providing a profile of OCR under different metabolic conditions. PDCL OCR values after the

FAO assay are provided in Table S3.
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Lactate Production and Glucose Consumption Assays
The L-Lactate content of culture media wasmeasured using the colorimetric-based L-Lactate Assay Kit (Abcam, #ab56331) accord-

ing to manufacturer’s specifications. 3 3 104 cells were plated in their respective, fully supplemented medium and 24 hours after

seeding, this medium was replaced. Cells were cultured for a further 48 hours before medium was taken for analysis. Each test

was performed in duplicate, with output adjusted to background lactate levels in medium and normalized to total cell count. Glucose

consumption was quantified via the colorimetric-based Glucose Uptake Assay Kit (Abcam, #ab136955) as per the manufacturer’s

protocol. Each test was performed in triplicate and normalized to cellular protein content. PDCL lactate production and glucose con-

sumption values are provided in Table S3.

In Vitro Cytotoxicity assays
Cells were plated in 96-well plates and treated with serial dilutions of indicated inhibitors 24hrs after plating for indicated time points.

Cell viability was determined using CellTiter 96� Aqueous non-radioactive cell proliferation assay composed of solutions of a tetra-

zolium compound [3-(4,5- dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and

an electron-coupling reagent (phenazine methosulfate; PMS) (Promega, Madison, WI, USA). The assay was performed at an absor-

bance of 490 nm using an ELISA plate reader (Tecan Trading AG). Background absorbance was corrected for by wells containing

medium alone and the absorbance was normalized to 100% (DMSO). 10 technical replicates were performed for 3 independent ex-

periments. IC50 calculation and dose response curves were generated using GraphPad Prism 8 (GraphPad Software Inc, La Jolla

CA). Normalized cell viability values are provided in Table S6 (GSK3bi single agent) and Table S7 (GSK3bi + ULKi + PORCNi triple

treatment).

In situ hybridization
In situ hybridization staining was performed on 4um formalin fixed paraffin embedded sections which had previously been ovened at

600C for 2 hours. In situ hybridization detection for WNT7a (401128) and PPIB (313918) (Advanced Cell Diagnostics, Hayward, CA)

mRNA was performed using RNAscope 2.5 LS (brown) detection kit (322100; Advanced Cell Diagnostics, Hayward, CA) and per-

formed on a Leica Bond Rx autostainer strictly adhering to the manufacturer’s instructions. WNT7A RNAscope analysis is provided

in Table S7.

ATACseq library preparation
ATAC-seq libraries were prepared similarly to previously describedmethods in Buenrostro et al. (2015). A suspension of 100,000 cells

were harvested from representative PDCLs and centrifuged for 5 mins at 600 g at 4�C. The cell pellet was washed in 50uL PBS, then

centrifuged for 5 mins at 600 g, 4�C. Supernatant was removed and 50uL ATAC-seq cold lysis buffer (10mM Tris-HCl pH 7.4, 10mM

NaCl, 3mM MgCl2, 0.1% IGEPAL-630) was added to the pellet and gently dislodged. The pellet was immediately centrifuged for

10 mins at 600 g 4�C. The transposition mixture was then made by combining 25uL TD (2X reaction buffer from Nextera kit

(Cat#20034197)), 4.7uL TDE1 (Nextera Tn5 Transposase from Nextera kit (Cat#20034197)) and 22.5uL nuclease-free H20. The pellet

was then resuspended in the transposition reaction mix and incubated 37�C for 30 mins. Immediately following transposition, the

DNA was purified using the QIAGEN MinElute PCR purification kit (Cat# 28004). Eluted transposed DNA was resuspended in

10uL buffer EB. To amplify transposed DNA fragments the following was combined in a 0.2mL PCR tube: 10uL transposed DNA,

10uL nuclease-free H20, 2.5 uL 25uMPCRPrimer 1, 2.5 uL 25uMBarcoded PCR primer 2, 25uL NEBNext High-Fidelity 2X PCRmas-

ter mix (Cat# m0541S). Thermal cycles used were as follows: 1 cycle: 5mins at 2�C, 30 s at 98�C, 5 cycles: 10 s at 98�C, 30 s at 63�C,
1min at 72�C. To calculate the additional number of cycles required for library amplification a qPCRwas performed by combining the

following: 5uL of previously PCR-amplified DNA, 4.2 uL H20, 0.4 uL 25uM primer 1, 0.4 uL 25uM primer 2, 5uL 2X SYBR green, 5uL

NEB PCRmaster mix. qPCR thermal cycles used were as following: 1 cycle: 30 s at 98�C, 20 cycles: 10 s at 98�C, 30 s at 63�C, 1 min

at 72�C. To calculate additional number of cycles required, plot linear Rn versus cycle and determine the cycle number that corre-

sponds to one-third of the maximum florescent intensity. The remaining 45uL PCR reaction was run the additional cycle number

determined by qPCR. Cycle as follows: 1 cycle: 30 s at 98�C, N cycles: 10 s at 98�C, 30 s at 63�C, 1 min at 72�C. Amplified library

was purified using QIAGEN Minelute PCR purification kit (Cat# 28004). Library was eluted in 20uL EB buffer. Excess adapters were

removed using AMPure XPmagnetic beads (Cat# 10136224) and DynaMag-2 magnetic rack. Preliminary library analysis for concen-

tration and size distribution was performed using Agilent High sensitivity DNA kit (Cat# 5067) on the Agilent Bioanalyzer.

siRNA screening
Prior to siRNA screening, optimal cell number per well and optimal reverse transfection reagents for each PDCL were identified by

assessing transfection efficiency, using six different transfection reagents (Dharmafect 1-4, RNAimax, Lipofectamine 2000), using the

manufacturers’ instructions. Experimental conditions were selected that met the following criteria: (i) compared to amock control (no

lipid, no siRNA), the transfection of non-silencing negative control siRNA caused no more than 20% cell inhibition; (ii) compared to

non-silencing negative control siRNA, the transfection of PLK1– targeting siRNA caused more than 80% cell inhibition; (iii) cell con-

fluency reached 70%within the range of 4-7 days (Campbell et al., 2016). The later criteria allowed assays to be terminatedwhile cells

were in growth phase. Once optimal conditions were established, each PDCLwas reverse transfected in a 384 well-plate format with

a custom siGENOME siRNA library (Dharmacon, USA) designed to target 714 kinase coding genes, 256 protein phosphatase coding
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genes, 722 genes implicated in energymetabolism, 73 tumor suppressor genes and 166 genes involved in the repair of DNA damage.

Each well in the 384 well-plate arrayed library contained a SMARTpool of four distinct siRNA species targeting different sequences of

the target transcript. Each plate was supplemented with non-targeting siCONTROL and siPLK1 siRNAs (Dharmacon, USA). Cell

viability was estimated five days after transfection using a luminescent assay detecting cellular ATP levels (CellTiter-Glo, Promega).

Luminescence values were processed using the cellHTS2 R package (Boutros et al., 2006). To evaluate the effect of each siRNA pool

on cell viability, we log2 transformed the luminescence measurements and then centered these to the median value for each plate.

The plate-centered data were scaled to the median absolute deviation (MAD) of the library as a whole to produce robust Z-scores. All

screens were performed in triplicate. Screens judged to have poor dynamic range (Z’ factor < 0) (Zhang et al., 1999) or poorly corre-

lated replicates (r < 0.7) were excluded during an evaluation of screen quality. Z scores were adjusted using a quantile normalization

(Parrish and Spencer, 2004).

Lentiviral transfection
To generate lentiviral particles, 2x106 HEK293FT cells were transfected with a mixture of 2 mg shRNA (see Key Resources Table for

shRNA contructs), 0.5 mg pMD2.G (Addgene, Cat#12259) and 1 mg psPAX2 (Addgene, Cat #12260) plasmid DNA using Lipofect-

amine 2000 (ThermoFisher Scientific, Cat #11668027) as per manufacturers guidelines. Forty-eight hours post transfection, media

was removed and filtered through a 0.45 mm Millex-AC filter (Millipore, Cat #SLHV004SL) and mixed at a 1:1 ratio with normal

PDCL growth medium, supplemented with polybrene (Millipore, Cat #TR-1003-G) to a final concentration of 5 mg/ml, and added

to PDCLs for twenty-four hours. PDCLs were subjected to two rounds of lentiviral infection prior to selection in 2 mg/ml of puromycin

(GIBCO, Cat #A1113802).

HNF4A and GATA6 siRNA knockdown
For siRNA mediated knockdown experiments, siRNA constructs were purchased from Dharmacon (Key Resources Table) and

PDCLs were transfected with 25 pmol siRNA using Lipofectamine RNAiMAX transfection reagent (ThermoFisher Scientific, Cat

#13778075) according to manufactures instructions for 6-well format. 72hrs following transfection, PDCLs were analyzed for target

knockdown (qRT-PCR andWestern Blot analysis) and subjected to RNA-seq or Glycolysis Stress Test analysis. PDCL siHNF4A and

siGATA6 RNA-seq, and siHNF4A ECAR values are provided in Table S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

siRNA screen analysis
siRNA ‘‘hits’’ were identified by calculating the median absolute deviation of normalized Z-scores for a given siRNA across all sam-

ples and identifying sample Z scores greater than or equal to 2 x the median absolute deviation. This analysis generated a ‘‘seed’’

matrix (n siRNA hits xm samples) whichwas used as starting input for the RandonWalk with Restart (RWR) algorithm as implemented

by the R package dnet (Fang and Gough, 2014). This algorithm was used to identify functionally important subnetworks associated

with cell viability from a curated protein-protein interaction network STRING v 10 (Szklarczyk et al., 2015). Considering the complex

nature of topological features of human interactome data, we introduce a randomization-based test to evaluate the candidate inter-

actors utilizing 1000 topologically matched random networks. Candidate interactors that remain significant (i.e., p edge < 0.05) were

identified and a consensus subnetwork was constructed by collapsing all sample-specific results. The resulting network was visu-

alized using RedeR (Castro et al., 2012). PDCL siRNA screen analysis is provide in Table S6.

RNaseq analysis
RNA-seq read mapping was performed by either the bcbio-nextgen RNaseq pipeline (https://bcbio-nextgen.readthedocs.io/en/

latest/) or RSEM package (Li and Dewey, 2011). Briefly, after quality control and adaptor trimming, reads were aligned to the

GRCh37 genome build using either STAR (Dobin et al., 2013) or RSEM. Count data, obtained from the respective RNaseq pipelines,

was normalized using the R/Bioconductor package ‘‘DESeq2’’ to produce rlog transformed expression values. The Combat function

from the R package sva was subsequently used to correct for batch effect and to produce an integrated matrix of normalize expres-

sion values. This matrix was used for all downstream analyses.

WGCNA analysis
Weighted gene co-expression network analysis (WGCNA) was used to generate a transcriptional network from rlog normalized RNa-

seq data (Langfelder and Horvath, 2008). Briefly, WGCNA clusters genes into network modules using a topological overlap measure

(TOM). The TOM is a highly robust measure of network interconnectedness and essentially provides a measure of the connection

strength between two adjacent genes and all other genes in a network. Genes are clustered using 1- TOM as the distance measure

and gene modules are defined as branches of the resulting cluster tree using a dynamic branch-cutting algorithm.

Themodule eigengene is used as ameasure ofmodule expression in a given sample and is defined as the first principle component

of amodule. To relate sample traits of interest to genemodules, sample traits were correlated tomodule eigengenes and significance

determined by a Student asymptotic P value for the given correlations. To relate gene modules to PDCL subtypes, module eigen-

genes were stratified by subtype and subtype significance determined by Kruskal–Wallis test.
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Module preservation as implemented in WGCNA detects the conservation of gene pairs between two networks (e.g., PDCL and

bulk). Two composite measures were used to assess module preservation namely, median rank and Zsummary. Median rank was

used to identify module preservation and Zsummary to assess significance of module preservation via permutation testing. Permu-

tation was performed 200 times, modules with a Zsummary score > 10 indicate preservation, 2 to 10 indicate weak tomoderate pres-

ervation and < 2 indicate no preservation in the permutations.

Identification of significant subtype specific changes in pathways and/or processes
The R package clipper (Martini et al., 2013) was used to identify pathways and/or processes showing significant change between

PDCL subtypes. clipper implements a two-step empirical approach, employing a statistical analysis of means and concentration

matrices of graphs derived from pathway topologies, to identify signal paths having the greatest association with a specific

phenotype.

Methylation analysis
Methylation analysis was performed using Illumina 450K arrays as previously described in (Bailey et al., 2016). Probe filtering, normal-

ization, and differential methylation analysis was performed using the package ‘ChAMP’ (Morris et al., 2014) using default settings.

Plots showing regions of differentially methylation were generated using the GVIZ package (Hahne and Ivanek, 2016).

ATACseq analysis
Sequencing reads were trimmed and aligned to assembly GRCh38 using bwa mem. Duplicate reads and reads mapping to mito-

chondrial sequences were subsequently removed. Chromatin accessibility peaks were called using MACS2 (Zhang et al., 2008)

and annotated using HOMER (Heinz et al., 2010) and/or ChipSeeker (Yu et al., 2015). Differential accessibility analysis was performed

using the R/Bioconductor package DiffBind (Ross-Innes et al., 2012). PDCL ATAC-seq analysis is provided in Table S7.

Generation of subtype specific signatures
Pathways and/or processes identified by clipper analysis were selected for signature generation. Subtype specific gene signatures

representing each pathway and/or process were generated by selecting significant genes in a given graph. Gene weights in each

signature represent estimated Z-scores generated from Student t test p values with direction of change provided by the t test

statistic. The ‘sig.score’ function from the R package genefu (Haibe-Kains et al., 2012) was used to calculate a specific signature

score in a given sample using the signatures generated for each pathway and/or process. PDCL bulk signature scores are provided

in Table S1.

Gene set enrichment of PDAC subtypes
Gene set enrichment was performed using the R package ‘GSVA’ (Hänzelmann et al., 2013). Gene sets representing PDAC subtypes

were generated as previously described (Bailey et al., 2016).

Clustering and subtype assignment
The package ‘ConsensusClusterPlus’ (Wilkerson and Hayes, 2010) was used to classify PDCLs according to the expression signa-

tures defined in Moffitt et al. (2015) and Bailey et al. (2016). Gene sets representing PDAC subtypes were generated as previously

described. PDCL consensus clustering using Bailey classification (Squamous versus Classical) differential gene expression analysis

is provided in Table S1.

Pathway analysis
Ontology and pathway enrichment analysis was performed using the R package ‘dnet’ and/or the ClueGO/CluePedia Cytoscape

(Bindea et al., 2013; Bindea et al., 2009) plugins as indicated. Visualization and/or generation of network diagrammes was performed

using either Cytoscape (Shannon et al., 2003) or the R package RedeR (Castro et al., 2012).

Plot generation
Heatmaps and oncoplots were generated using the R package ComplexHeatmap (Gu et al., 2016). Dotcharts, density plots and box-

plots were generated using the R package ggpubr. Violin plots were generated using the python package Seaborn.Biplot was gener-

ated using the R package ggfortify (Tang et al., 2016). All other plots were generated using the R package ggplot2 (Wickham, 2009).

Statistical analysis
Statistical parameters are reported in the figures and figure legends. Data are considered significant if p < 0.05. Data are presented as

mean ± SD for technical replicates, or mean ± SEM for biological replicates. Data was analyzed using unpaired Student t test when

comparing two conditions. One-way ANOVA with Tukey’s multiple comparisons test was performed on comparisons of more than

two conditions. Two-way ANOVAwas performed on PDCL survival triple inhibitor studies. Kruskal–Wallis test was applied to the indi-

cated stratified scores to determine whether distributions were significantly different. Fisher’s exact tests were used to evaluate the
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association between dichotomous variables. Survival analysis was performed as previously described (Bailey et al., 2016). Statistical

analyses were carried out in either GraphPad Prism 8 (version 8.3.0) or R (version 3.6.1).

DATA AND CODE AVAILABILITY

Human pancreatic cancer gene expression and genotyping data can be found at the Gene Expression Omnibus Repository (GEO)

accession number: GSE36924 and GSE49149. Human pancreatic cancer PDCL alignments, somatic variant calls, annotations and

RNA-seq datasets are available at https://dcc.icgc.org/. ATAC-seq sequencing data from patient derived cell lines can be found at

BioProject: PRJNA630992. Original data for all datasets in this paper is available at Mendeley Data :https://doi.org/10.17632/

74s7crj7xj.1. All software packages used are publicly available through commercial vendors.
Cell Reports 31, 107625, May 12, 2020 e10

https://dcc.icgc.org/
https://doi.org/10.17632/74s7crj7xj.1
https://doi.org/10.17632/74s7crj7xj.1

	HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer
	Introduction
	Results
	PDAC PDCLs Recapitulate Metabolic Profiles Observed in PDAC Bulk Tumor Tissue
	Loss of HNF4A or GATA6 in Classical (Pancreatic) PDCLs Recapitulates Transcriptional Profiles Associated with the Squamous  ...
	Loss of HNF4A Activates a Gene Expression Program that Favors Glycolysis
	Targeting Glycolysis Shows Subtype Sensitivity in Squamous PDCLs
	A Subset of Squamous PDCLs Acquires GSK3β Drug Tolerance after Extended Suppression of Glycolysis
	ATAC-Seq and Transcriptomic Analysis Reveal a Uniquely Accessible WNT Gene Program in the Drug-Tolerant Squamous Subtype
	Porcupine Inhibition Overcomes WNT-Driven Acquired Resistance to GSK3β Inhibition in Squamous PDCLs

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Lead Contact and Materials Availability
	Experimental Model and Subject Details
	Human Subjects
	Cell Lines
	In vivo animal studies

	Method Details
	Western blotting
	Nucleic acid extraction
	Quantitative RT-PCR
	Whole-genome library preparation
	RNA sequencing library generation and sequencing
	Library sequencing
	Copy number analysis
	Identification and verification of structural variants
	Identification of and verification of point mutations
	Mutational signatures
	Metabolite measurements
	Extracellular Metabolic Flux Assays
	Glycolysis Stress Test
	FAO Assay
	Lactate Production and Glucose Consumption Assays
	In Vitro Cytotoxicity assays
	In situ hybridization
	ATACseq library preparation
	siRNA screening
	Lentiviral transfection
	HNF4A and GATA6 siRNA knockdown

	Quantification and Statistical Analysis
	siRNA screen analysis
	RNaseq analysis
	WGCNA analysis
	Identification of significant subtype specific changes in pathways and/or processes
	Methylation analysis
	ATACseq analysis
	Generation of subtype specific signatures
	Gene set enrichment of PDAC subtypes
	Clustering and subtype assignment
	Pathway analysis
	Plot generation
	Statistical analysis

	Data and Code Availability



