82 research outputs found

    Probing liquid surface waves, liquid properties and liquid films with light diffraction

    Full text link
    Surface waves on liquids act as a dynamical phase grating for incident light. In this article, we revisit the classical method of probing such waves (wavelengths of the order of mm) as well as inherent properties of liquids and liquid films on liquids, using optical diffraction. A combination of simulation and experiment is proposed to trace out the surface wave profiles in various situations (\emph{eg.} for one or more vertical, slightly immersed, electrically driven exciters). Subsequently, the surface tension and the spatial damping coefficient (related to viscosity) of a variety of liquids are measured carefully in order to gauge the efficiency of measuring liquid properties using this optical probe. The final set of results deal with liquid films where dispersion relations, surface and interface modes, interfacial tension and related issues are investigated in some detail, both theoretically and experimentally. On the whole, our observations and analyses seem to support the claim that this simple, low--cost apparatus is capable of providing a wealth of information on liquids and liquid surface waves in a non--destructive way.Comment: 25 pages, 12 figures, to appear in Measurement Science and Technology (IOP

    Factor analyses for the Orebro Musculoskeletal Pain Questionnaire for working and nonworking patients with chronic low back pain

    Get PDF
    BACKGROUND CONTEXT: The Orebro Musculoskeletal Pain Questionnaire (OMPQ) has good psychometric properties to predict return to work in patients with acute low back pain. Although it is used in patients with chronic back pain and nonworkers, there is no evidence on the factor structure of the OMPQ in these populations. This is deemed an important prerequisite for future prediction studies. PURPOSE: This study aimed to analyze the factor structure of the OMPQ in working and nonworking patients with chronic back pain. STUDY DESIGN/SETTING: This is a cross-sectional study in a university-based spine center. PATIENT SAMPLE: The patient sample consists two cohorts of working and nonworking adult patients (> 18 years) with specific and nonspecific chronic back pain. OUTCOME MEASURES: The Orebro Musculoskeletal Pain Questionnaire. METHODS: Exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) were performed in working (N= 557) and nonworking (N= 266) patients for three, four, five, and six factors identified in literature. A goodness of fit index was calculated by a chi-square. Root mean square error of approximation (RMSEA) was calculated, and the number of factors identified was based on RMSEA values 0.90 are considered to indicate acceptable fit. RESULTS: In working patients, a five-factor solution had the best fit (RMSEA <0.05; NFI and TLI > 0.90), but substantial adaptations should be made to get proper fit (removal of the work-related items). In nonworking patients, a four-factor analysis had the best fit (RMSEA <0.05). For both samples, items related to duration could not fit in the overall model. CONCLUSIONS: Factor structure of the OMPQ was not confirmed in working and nonworking patients with chronic back pain. Substantial adaptations should be made to obtain a factor structure with acceptable fit. (C) 2016 The Authors. Published by Elsevier Inc

    Multiphoton Quantum Optics and Quantum State Engineering

    Full text link
    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromnagnetic field, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.Comment: 198 pages, 36 eps figure

    Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers

    Get PDF
    Formation of coherent structures and patterns from unstable uniform state or noise is a fundamental physical phenomenon that occurs in various areas of science ranging from biology to astrophysics. Understanding of the underlying mechanisms of such processes can both improve our general interdisciplinary knowledge about complex nonlinear systems and lead to new practical engineering techniques. Modern optics with its high precision measurements offers excellent test-beds for studying complex nonlinear dynamics, though capturing transient rapid formation of optical solitons is technically challenging. Here we unveil the build-up of dissipative soliton in mode-locked fibre lasers using dispersive Fourier transform to measure spectral dynamics and employing autocorrelation analysis to investigate temporal evolution. Numerical simulations corroborate experimental observations, and indicate an underlying universality in the pulse formation. Statistical analysis identifies correlations and dependencies during the build-up phase. Our study may open up possibilities for real-time observation of various nonlinear structures in photonic systems

    Deaths among wild birds during highly pathogenic avian influenza A(H5N8) virus outbreak, the Netherlands

    Get PDF
    During autumn–winter 2016–2017, highly pathogenic avian influenza A(H5N8) viruses caused mass die-offs among wild birds in the Netherlands. Among the ≈13,600 birds reported dead, most were tufted ducks (Aythya fuligula) and Eurasian wigeons (Anas penelope). Recurrence of avian influenza outbreaks might alter wild bird population dynamics

    An open-source machine learning framework for global analyses of parton distributions

    Get PDF
    Abstract: We present the software framework underlying the NNPDF4.0 global determination of parton distribution functions (PDFs). The code is released under an open source licence and is accompanied by extensive documentation and examples. The code base is composed by a PDF fitting package, tools to handle experimental data and to efficiently compare it to theoretical predictions, and a versatile analysis framework. In addition to ensuring the reproducibility of the NNPDF4.0 (and subsequent) determination, the public release of the NNPDF fitting framework enables a number of phenomenological applications and the production of PDF fits under user-defined data and theory assumptions

    A data-based parametrization of parton distribution functions

    No full text
    Since the first determination of a structure function many decades ago, all methodologies used to determine structure functions or parton distribution functions (PDFs) have employed a common prefactor as part of the parametrization. The NNPDF collaboration pioneered the use of neural networks to overcome the inherent bias of constraining the space of solution with a fixed functional form while still keeping the same common prefactor as a preprocessing. Over the years various, increasingly sophisticated, techniques have been introduced to counter the effect of the prefactor on the PDF determination. In this paper we present a methodology to perform a data-based scaling of the Bjorken x input parameter which facilitates the removal the prefactor, thereby significantly simplifying the methodology, without a loss of efficiency and finding good agreement with previous results

    Correlation and combination of sets of parton distributions

    No full text
    We study the correlation between different sets of parton distributions (PDFs). Specifically, viewing different PDF sets as distinct determinations, generally correlated, of the same underlying physical quantity, we examine the extent to which the correlation between them is due to the underlying data. We do this both for pairs of PDF sets determined using a given fixed methodology, and between sets determined using different methodologies. We show that correlations have a sizable component that is not due to the underlying data, because the data do not determine the PDFs uniquely. We show that the data-driven correlations can be used to assess the efficiency of methodologies used for PDF determination. We also show that the use of data-driven correlations for the combination of different PDFs into a joint set can lead to inconsistent results, and thus that the statistical combination used in constructing the widely used PDF4LHC15 PDF set remains the most reliable method
    corecore