25 research outputs found

    Improved transformation of Agrobacterium assisted by silver nanoparticles

    Get PDF
    In transgenic plant development, the low transformation efficiency of Agrobacterium with exogenous DNA is the major constraint, and hence, methods to improve its transformation efficiency are needed. Recently, nanoparticle-mediated gene transfer has evolved as a key transformational tool in genetic transformation. Since silver nanoparticles (AgNPs) can induce pores on the cell membrane, their efficacy in the improvement of conventional calcium chloride freeze-thaw technique of transformation of Agrobacterium was explored in this study. Agrobacterium cells in the exponential growth phase were exposed to different concentrations of AgNPs (0.01, 1, 5, 10, and 20 mg/l), and the half-maximal effective concentration (EC50) was determined via Probit analysis using the SPSS software. Transformation efficiency of AgNPs alone and in combination with calcium chloride was compared with that of the conventional calcium chloride freeze-thaw technique. AgNPs at a concentration of 0.01 mg/l in combination with calcium chloride (20 mM) showed a ten fold increase in the transformation efficiency (3.33 log CFU (colony-forming unit/microgram) of DNA) of Agrobacterium tumefaciens strain EHA 105 with plasmid vector pART27 compared with the conventional technique (2.31 log CFU/μg of DNA). This study indicates that AgNPs of size 100 nm can eliminate the freeze-thaw stage in the conventional (Agrobacterium transformation technique, with a 44% improvement in efficiency. The use of AgNPs (0.01 mg/l) along with 20 mM calcium chloride was found to be an economically viable method to improve the transformation of Agrobacterium with exogenous plasmid DNA

    Algicidal Effects of Green Synthesized Silver Nanoparticles using Tinospora cordifolia on Chlamydomonas reinhardtii

    Get PDF
    Eco-friendly anti-algal agents are in demand for preventing the growth of unwanted algae. Green synthesized nanoparticles exhibit antimicrobial properties and have been used as a better alternative against chemical and physical processes. In the present study, treatment of silver nitrate with leaf extracts (5% w/v) of Tinospora cordifolia, a plant with proven antimicrobial effects, exhibited UV-visible absorption maxima between 440-460 nm after 1h indicating bioreduction of silver to nanoparticles. The green synthesised silver nanoparticles (5 mgl-1) exhibited inhibition zones against Chlamydomonas reinhardtii in in vitro agar assays. Treatment with green synthesised silver nanoparticles during exponential phase of algal growth resulted in significant reduction in algal population, carbohydrate, protein and chlorophyll contents confirming the anti-algal potential. This is the first report on the growth inhibitory potential of green synthesised silver nanoparticles against green algae

    Measurement of the charge asymmetry in highly boosted top-quark pair production in √s=8 TeV pp collision data collected by the ATLAS experiment

    Get PDF
    In the pp→tt process the angular distributions of top and anti-top quarks are expected to present a subtle difference, which could be enhanced by processes not included in the Standard Model. This Letter presents a measurement of the charge asymmetry in events where the top-quark pair is produced with a large invariant mass. The analysis is performed on 20.3 fb-1 of pp collision data at √s=8TeV collected by the ATLAS experiment at the LHC, using reconstruction techniques specifically designed for the decay topology of highly boosted top quarks. The charge asymmetry in a fiducial region with large invariant mass of the top-quark pair (mtt>0.75 TeV) and an absolute rapidity difference of the top and anti-top quark candidates within -2<|yt|-|yt|<2 is measured to be 4.2±3.2%, in agreement with the Standard Model prediction at next-to-leading order. A differential measurement in three tt- mass bins is also presented

    Combination of searches for WW, WZ, and ZZ resonances in pp collisions at s=8 TeV with the ATLAS detector

    Get PDF
    The ATLAS experiment at the CERN Large Hadron Collider has performed searches for new, heavy bosons decaying to WW, WZ and ZZ final states in multiple decay channels using 20.3 fb-1 of pp collision data at s=8 TeV. In the current study, the results of these searches are combined to provide a more stringent test of models predicting heavy resonances with couplings to vector bosons. Direct searches for a charged diboson resonance decaying to WZ in the ℓνℓ'ℓ' (ℓ=μ, e), ℓℓqq-, ℓνqq- and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WZ bosons are compared with predictions of an extended gauge model with a heavy W' boson. In addition, direct searches for a neutral diboson resonance decaying to WW and ZZ in the ℓℓqq-, ℓνqq-, and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WW and ZZ bosons are compared with predictions for a heavy, spin-2 graviton in an extended Randall-Sundrum model where the Standard Model fields are allowed to propagate in the bulk of the extra dimension

    The Physics of the B Factories

    Get PDF

    Improved transformation of <i>Agrobacterium</i> assisted by silver nanoparticle

    No full text
    In transgenic plant development, the low transformation efficiency of Agrobacterium with exogenous DNA is the major constraint, and hence, methods to improve its transformation efficiency are needed. Recently, nanoparticlemediated gene transfer has evolved as a key transformational tool in genetic transformation. Since silver nanoparticles (AgNPs) can induce pores on the cell membrane, their efficacy in the improvement of conventional calcium chloride freeze-thaw technique of transformation of Agrobacterium was explored in this study. Agrobacterium cells in the exponential growth phase were exposed to different concentrations of AgNPs (0.01, 1, 5, 10, and 20 mg/l), and the half-maximal effective concentration (EC50) was determined via Probit analysis using the SPSS software. Transformation efficiency of AgNPs alone and in combination with calcium chloride was compared with that of the conventional calcium chloride freeze-thaw technique. AgNPs at a concentration of 0.01 mg/l in combination with calcium chloride (20 mM) showed a ten fold increase in the transformation efficiency (3.33 log CFU (colony-forming unit/microgram of DNA) of Agrobacterium tumefaciens strain EHA 105 with plasmid vector pART27 compared with the conventional technique (2.31 log CFU/μg of DNA). This study indicates that AgNPs of size 100 nm can eliminate the freeze-thaw stage in the conventional Agrobacterium transformation technique, with a 44% improvement in efficiency. The use of AgNPs (0.01 mg/l) along with 20 mM calcium chloride was found to be an economically viable method to improve the transformation of Agrobacterium with exogenous plasmid DNA

    Developed and validated script for 18F – PSMA -1007 Synthesis in IBA – Synthera version-01

    No full text
    Prostate cancer is the most frequent cancer among males around the world. According to the American Cancer Society's website, one out of every nine males is likely to be diagnosed with prostate cancer [1]. It is the world's second greatest cause of death among males. PSA, or prostate-specific antigen, is a popular biomarker for prostate cancer. For early disease detection, standard imaging technologies such as CT and MRI have not proved sufficient information. PET imaging in conjunction with CT/MRI is a useful tool for detecting prostate cancer [2]. PSMA (prostate-specific membrane antigen) tagged with radioisotopes is a promising agent for both early detection and therapy of prostate cancer. In prostate cancer cells, PSMA is overexpressed. As a service provider, we decided to create and supply the 18F-PSMA 1007 in response to the clinical need for PSMA in nuclear medicine departments. We've been commercially generating 18F-FDG and 18F NaF since 2009, and we thought 18F-PSMA was a tracer with clinical potential as well as economic potential and added value to the company. Despite the fact that we had already purchased a synthesiser (Trasis AllInOne) capable of producing 18F-PSMA-1007, installation and commissioning were nowhere to be found. As a result, we used Synthera v1 to make 18F-PSMA-1007 (Synthera v1; already retired by IBA, the manufacturer). Regent kits to make 18F-PSMA-1007 with more recent versions of Synthera (Synthera v2 and Synthera Plus) were available, and the product may be used in our experiments, but there was no approved synthesis script / sequence for Synthera v1. As a result, the first task was to write the /sequence script

    Characterization and modeling of NbNiTaTiW and NbNiTaTiW-Al refractory high-entropy alloys

    No full text
    High-entropy alloys (HEAs) represent a new class of material that exhibit unique materials properties and complex microstructure. Little work to date has been done on refractory HEAs (RHEAs), which can loosely be defined as an HEA with the majority of the alloy being refractory metals. In this study, the authors examined two unique RHEA systems: (1) Nb20Ni20Ta20Ti20W20 and (2) Nb18Ni18Ta18Ti18W18Al10. The RHEAs were characterized in the as-cast and heat-treated condition using scanning electron microscopy equipped with energy dispersive spectroscopy to observe the microstructural evolution and elemental segregation and X-ray diffraction to determine the number of phases present and their crystal structure. The RHEA mechanical properties were tested via Vickers hardness measurements. Thermodynamic simulations of the solidification process were performed using a CALPHAD approach involving two basic models: equilibrium lever rule and non-equilibrium Scheil-Gulliver. The simulations were compared with the experimental data
    corecore