363 research outputs found

    Mind the climate policy gaps: climate change public policy and reality in Portugal, Spain and Morocco

    Get PDF
    The IPCC 1.5 °C report argues for a 50% cut of global greenhouse gas emissions by 2030. Dangerous gaps lie between what is required to reach the 1.5 °C objective, what governments have pledged and what is happening in reality. Here, we develop ‘climate policy gap’ graphics for Portugal, Spain and Morocco to help reveal this divide and quantify the under-reaction between diagnosis and action, through layers of political intended and unintended miscommunication, insufficient action and the power of the fossil fuels industries. The climate policy gaps for the three nations reveal overshoots on even the most ambitious levels of emissions reductions pledged when compared with trajectories compatible with 1.5 °C or even 2 °C limits. This research suggests that there is a built-in feature of under-reaction in climate policy, which staves off any emission pathways compatible with stopping a temperature rise above 1.5 °C by 2100. It shows that the climate policy gap is a political and methodological tool that reveals systemic shortcomings of government climate action. Its visibility identifies benchmarks and sectors that should be activated to close these gaps in response to the growing popular demands for climate justice.info:eu-repo/semantics/publishedVersio

    How will a warming climate affect the Benguela coastal low‐level wind jet?

    Get PDF
    The strong coastal upwelling associated to the Benguela eastern boundary upwelling system makes the ocean along coast of this current one of the most productive ecosystems in the world. The Benguela Coastal Low‐Level Jet (BCLLJ) is one of the most important mesoscale feature that shape the climate of this region. The main synoptic forcing of the BCLLJ is the Angola thermal low over land and the St. Helen anticyclone over the ocean, resulting in southwesterly winds along the coast. This study investigates how the BCLLJ might change due to climate warming, with the help of uncoupled and coupled simulations from a 25‐km horizontal resolution regional climate model (ROM). In general, the coupled simulation displays the best performance in representing the present time near‐surface wind speed, with a decrease on the known warm bias of sea surface temperature in the Benguela eastern boundary upwelling system region. The analysis of the projected changes of the BCLLJ climate toward the end of the 21st century (2070–2099), following the RCP8.5 emissions scenario, shows an increase in the frequency of the BCLLJ occurrence along the southern area with higher changes in the coupled simulation (between 6% and 8%). These changes are related to a southerly shift of the St. Helen High, which intensifies the flow offshore the west coast of South Africa and causes a sharpening of the land‐sea thermal contrasts. However, during spring, associated with the decrease in near‐surface wind speed due to higher sea surface temperatures, the future frequency and intensity of the BCLLJ are lower

    Distinct influences of large-scale circulation and regional feedbacks in two exceptional 2019 European heatwaves

    Get PDF
    Two separate heatwaves affected western Europe in June and July 2019, in particular France, Belgium, the Netherlands, western Germany and northeastern Spain. Here we compare the European 2019 summer temperatures to multi-proxy reconstructions of temperatures since 1500, and analyze the relative influence of synoptic conditions and soil-atmosphere feedbacks on both heatwave events. We find that a subtropical ridge was a common synoptic setup to both heatwaves. However, whereas the June heatwave was mostly associated with warm advection of a Saharan air mass intrusion, land surface processes were relevant for the magnitude of the July heatwave. Enhanced radiative fluxes and precipitation reduction during early July added to the soil moisture deficit that had been initiated by the June heatwave. We show this deficit was larger than it would have been in the past decades, pointing to climate change imprint. We conclude that land-atmosphere feedbacks as well as remote influences through northward propagation of dryness contributed to the exceptional intensity of the July heatwave

    Effects of recent minimum temperature and water deficit increases on Pinus pinaster radial growth and wood density in southern Portugal

    Get PDF
    Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on longterm droughts and their repercussion on the shallow groundwater table and P. pinaster’s vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster’s production capacity and quality in response to more arid conditions in the near future in the regioninfo:eu-repo/semantics/publishedVersio

    Validation of spatial variability in downscaling results from the VALUE perfect predictor experiment

    Get PDF
    The spatial dependence of meteorological variables is crucial for many impacts, for example, droughts, floods, river flows, energy demand, and crop yield. There is thus a need to understand how well it is represented in downscaling (DS) products. Within the COST Action VALUE, we have conducted a comprehensive analysis of spatial variability in the output of over 40 different DS methods in a perfect predictor setup. The DS output is evaluated against daily precipitation and temperature observations for the period 1979?2008 at 86 sites across Europe and 53 sites across Germany. We have analysed the dependency of correlations of daily temperature and precipitation series at station pairs on the distance between the stations. For the European data set, we have also investigated the complexity of the downscaled data by calculating the number of independent spatial degrees of freedom. For daily precipitation at the German network, we have additionally evaluated the dependency of the joint exceedance of the wet day threshold and of the local 90th percentile on the distance between the stations. Finally, we have investigated regional patterns of European monthly precipitation obtained from rotated principal component analysis. We analysed Perfect Prog (PP) methods, which are based on statistical relationships derived from observations, as well as Model Output Statistics (MOS) approaches, which attempt to correct simulated variables. In summary, we found that most PP DS methods, with the exception of multisite analog methods and a method that explicitly models spatial dependence yield unrealistic spatial characteristics. Regional climate model?based MOS methods showed good performance with respect to correlation lengths and the joint occurrence of wet days, but a substantial overestimation of the joint occurrence of heavy precipitation events. These findings apply to the spatial scales that are resolved by our observation network, and similar studies with higher resolutions, which are relevant for small hydrological catchment, are desirable.Funding Information: EU. Grant Number: EU COST Action ES110

    Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble

    Get PDF
    In the current work we present six hindcast WRF (Weather Research and Forecasting model) simulations for the EURO-CORDEX (European Coordinated Regional Climate Downscaling Experiment) domain with different configurations in microphysics, convection and radiation for the time period 1990?2008. All regional model simulations are forced by the ERA-Interim reanalysis and have the same spatial resolution (0.44°). These simulations are evaluated for surface temperature, precipitation, short- and longwave downward radiation at the surface and total cloud cover. The analysis of the WRF ensemble indicates systematic temperature and precipitation biases, which are linked to different physical mechanisms in the summer and winter seasons. Overestimation of total cloud cover and underestimation of downward shortwave radiation at the surface, mostly linked to the Grell?Devenyi convection and CAM (Community Atmosphere Model) radiation schemes, intensifies the negative bias in summer temperatures over northern Europe (max ?2.5 °C). Conversely, a strong positive bias in downward shortwave radiation in summer over central (40?60%) and southern Europe mitigates the systematic cold bias over these regions, signifying a typical case of error compensation. Maximum winter cold biases are over northeastern Europe (?2.8 °C); this location suggests that land?atmosphere rather than cloud?radiation interactions are to blame. Precipitation is overestimated in summer by all model configurations, especially the higher quantiles which are associated with summertime deep cumulus convection. The largest precipitation biases are produced by the Kain?Fritsch convection scheme over the Mediterranean. Precipitation biases in winter are lower than those for summer in all model configurations (15?30%). The results of this study indicate the importance of evaluating not only the basic climatic parameters of interest for climate change applications (temperature and precipitation), but also other components of the energy and water cycle, in order to identify the sources of systematic biases, possible compensatory or masking mechanisms and suggest pathways for model improvement.The contribution from Universidad de Cantabria was funded by the Spanish R&D programme through projects CORWES (CGL2010-22158-C02-01) and WRF4G (CGL2011-28864), co-funded by the European Regional Development Fund. M. García-Díez acknowledges financial support from the EXTREMBLES (CGL2010-21869) project

    Dynamical and statistical downscaling of a global seasonal hindcast in eastern Africa

    Get PDF
    Within the FP7 EUPORIAS project we have assessed the utility of dynamical and statistical downscaling to provide seasonal forecast for impact modelling in eastern Africa. An ensemble of seasonal hindcasts was generated by the global climate model (GCM) EC-EARTH and then downscaled by four regional climate models and by two statistical methods over eastern Africa with focus on Ethiopia. The five-month hindcast includes 15 members, initialised on May 1?st covering 1991?2012. There are two sub-regions where the global hindcast has some skill in predicting June?September rainfall (northern Ethiopia ? northeast Sudan and southern Sudan - northern Uganda). The regional models are able to reproduce the predictive signal evident in the driving EC-EARTH hindcast over Ethiopia in June?September showing about the same performance as their driving GCM. Statistical downscaling, in general, loses a part of the EC-EARTH signal at grid box scale but shows some improvement after spatial aggregation. At the same time there are no clear evidences that the dynamical and statistical downscaling provide added value compared to the driving EC-EARTH if we define the added value as a higher forecast skill in the downscaled hindcast, although there is a tendency of improved reliability through the downscaling. The use of the global and downscaled hindcasts as input for the Livelihoods, Early Assessment and Protection (LEAP) platform of the World Food Programme in Ethiopia shows that the performance of the LEAP platform in predicting humanitarian needs at the national and sub-national levels is not improved by using downscaled seasonal forecasts.This work was done in the EUPORIAS project that received funding from the European Union Seventh Framework Programme (FP7) for Research, under grant agreement 308291. The authors thank the European Centre for Medium-Range Weather Forecasts (ECMWF), the Global Precipitation Climatology Centre (GPCC), the British Atmospheric Data Centre (BADC), the University of East Anglia (UEA), the University of Delaware, the University of Reading, the University of California, the Climate Prediction Center (CPC), the US Agency for International Development’s Famine Early Warning Network (FEWS NET) and the WATCH project for providing data. For the WRF simulations, the UCAN group acknowledges Santander Supercomputacion support group at the University of Cantabria, who provided access to the Altamira Supercomputer at the Institute of Physics of Cantabria (IFCA-CSIC), member of the Spanish Supercomputing Network. DWD wants to thank ECMWF for the support during the CCLM4 simulations which have been carried out at the ECMWF computing system. The SMHI RCA4 simulations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at National Supercomputer Centre (NSC) and the PDC Center for High Performance Computing (PDC-HPC)

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
    • …
    corecore