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Abstract

The spatial dependence of meteorological variables is crucial for many
impacts, e.g. droughts, floods, river flows, energy demand, and crop yield.
There is thus a need to understand how well it is represented in down-
scaling products. Within the COST Action VALUE we have conducted a
comprehensive analysis of spatial variability in the output of over 40 dif-
ferent downscaling methods in a perfect predictor setup. The downscaling
output is evaluated against daily precipitation and temperature observa-
tions for the period 1979-2008 at 86 sites across Europe and 53 sites across
Germany. We have analysed the dependency of correlations of daily tem-
perature and precipitation series at station pairs on the distance between
the stations. For the European dataset we have also investigated the com-
plexity of the downscaled data by calculating the number of independent
spatial degrees of freedom. For daily precipitation at the German network
we have additionally evaluated the dependency of the joint exceedance of
the wet day threshold and of the local 90th percentile on the distance
between the stations. Finally we have investigated regional patterns of
European monthly precipitation obtained from rotated principal compo-
nent analysis.

We analysed Perfect Prog methods, which are based on statistical re-
lationships derived from observations, as well as Model Output Statistics
approaches, which attempt to correct simulated variables. In summary
we found that most Perfect Prog downscaling methods, with the excep-
tion of multi-site analog methods and a method that explicitly models
spatial dependence yield unrealistic spatial characteristics. RCM-based
Model Output Statistics methods showed good performance with respect
to correlation lengths and the joint occurrence of wet days, but a substan-
tial overestimation of the joint occurrence of heavy precipitation events.
These findings apply to the spatial scales that are resolved by our ob-
servation network, and similar studies with higher resolutions, which are
relevant for small hydrological catchment, are desirable.

2

Accepted manuscript. International Journal of Climatology (Jan 2019). DOI: 10.1002/joc.6024



1 Introduction1

Projections for future climate change are primarily based on simulations with2

coupled atmosphere-ocean general circulation models (GCMs). Their relatively3

coarse horizontal resolution of around 100 km means that not all relevant at-4

mospheric processes can be realistically modelled, which leads to errors on the5

resolved scales. Moreover, the output does not have the spatial resolution often6

needed for impact and adaptation studies. In order to overcome these problems7

downscaling (DS) methods are routinely used, either based on high-resolution8

regional climate models (RCMs), on statistical methods, or on a combination9

of both (Maraun and Widmann, 2018; Ekstroem et al., 2015; Hewitson et al.,10

2014; Maraun et al., 2010).11

The spatial structure of the output from DS methods is highly relevant when12

the results are used to assess impacts that are determined by spatial aggregation13

of meteorological variables. Typical examples for which a realistic representa-14

tions of spatial variability matters are river flow and floods (Arnaud et al., 2002;15

Segond et al., 2007; Viviroli et al., 2009), droughts (Trambauer et al., 2015),16

glacier mass balance (Machguth et al., 2009), ecosystem composition (Mon-17

estiez et al., 2001), crop yields (Holzkämper et al., 2012), energy consumption18

and production, as well as weather-related health problems. For instance an19

over- or underestimation of correlations between precipitation timeseries at dif-20

ferent locations within a river catchment would typically lead to an over- or21

underestimation of high and low river flow conditions.22

Within the COST action VALUE a comprehensive validation framework for23

DS methods has been designed and implemented (Maraun et al., 2015). The24

user-relevant aspects of DS output identified in the framework are marginal25

distributions including extremes, temporal variability, and intervariable rela-26

tionships, all considered at individual locations, as well as spatial variability.27

The performance of DS methods with respect to the aspects defined at indi-28

vidual stations within Europe has been investigated in the companion papers29

in this special issue (Gutiérrez et al., 2018; Hertig et al., 2018; Maraun et al.,30

2018). Here we analyse specifically how well the different DS methods represent31

the spatial structure of precipitation and temperature fields over Europe. As32

pointed out in Maraun et al. (2015) it is usually not the spatial pattern of the33

long-term mean but the structure of the individual events that is relevant for34

impacts, because it includes for instance the information on whether all loca-35

tions within a river catchment tend to receive precipitation at the same time,36

or whether it is likely that some areas stay dry when there is precipitation in37

others. It can be useful to remove the effect of the climatological mean on indi-38

vidual events and to analyse the residual spatial variability, i.e. to express the39

data as deviations from the long-term mean.40

More formally speaking, when considering a meteorological variable simul-41

taneously at different locations we are dealing with a multivariate dataset given42

by the values at the different locations, and the goal when validating spatial43

variability is to investigate the similarity of the observed and downscaled data44

clouds. To a first order approximation the datasets are characterised by their45

multivariate long-term temporal means, i.e. by the patterns of the climatologi-46

cal mean. For the observations it is mainly influenced by the meridional gradient47

and local differences in the radiation budget, the proximity to the oceans, the48

mean large-scale atmospheric circulation, and topography. These factors in-49
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fluence meteorological processes such as atmospheric stability, convection, flow50

convergence, frontal passages, or Foehn, which affect the spatial structure of51

individual weather events as well as of the long-term mean. It can be expected52

that almost all statistical DS method reproduce the mean temperature and pre-53

cipitation fields quite well by construction, for instance by estimating anomalies54

around the observed mean in the case of regression-based methods or by ad-55

justing distributions. The skill of DS methods with respect to representing the56

mean has been analysed to some extent in Gutiérrez et al. (2018), albeit without57

explicitly investigating the spatial pattern of the bias of the long-term means.58

The mean bias in the raw output of regional models has been investigated in59

many publications (e.g. Kotlarski et al., 2014; Isotta et al., 2015). Moreover,60

as already mentioned, it is mostly the structure of the residual spatial variabil-61

ity that is impact-relevant. We therefore focus in our analysis on the spatial62

structure of the residual variability, mainly on the daily timescale.63

For multivariate Gaussian data the structure of the variability around the64

mean is fully captured by the covariance matrix, and for normalised data by65

the correlation matrix. It is thus a natural starting point to investigate the66

similarity of the observed and the downscaled covariances or correlations be-67

tween different locations. As correlations are a direct measure for the strength68

of linear relationships between timeseries we will consider those. We will also69

investigate the probabilities for joint exceedances of thresholds, which are of70

practical relevance for impact modelling and which for non-Gaussian data do71

not directly follow from the covariance matrix. We note that multivariate data72

can alternatively be described by a combination of their marginal distributions,73

which are investigated in Gutiérrez et al. (2018), and copulas that analytically74

express the dependence structure. However, for brevity this approach is not75

taken here. In addition we will analyse the overall complexity, and the repre-76

sentation of regional patterns. Details on our validation approach are given in77

the method section.78

In spite of the importance of the spatial structure of daily values for cli-79

mate impacts, only a few studies have validated the spatial aspects of stan-80

dard deterministic Perfect Prog (PP) downscaling products. Correlations be-81

tween timeseries at different locations, including their dependency on distance,82

have been analysed (Easterling, 1999; Kettle and Thompson, 2004; Huth et al.,83

2008, 2015), and homogeneous regions have been investigated by cluster analy-84

sis (Huth, 2002). These studies, most of which focus on temperature, indicate85

that PP methods that use large-scale predictors overestimate spatial correla-86

tions, whereas local analog methods underestimate them. Huth et al. (2015)87

additionally included two RCMs in the method comparison and found no sys-88

tematic over- or underestimation for them. A comparison of some PP and MOS89

methods, as well as RCMs, undertaken by Ayar et al. (2016) included some90

analysis of spatial variability of daily precipitation based on the leading Prin-91

cipal Component (PC) loading patterns and on correlations of daily patterns.92

The study found a mixed performance of the RCMs and MOS with better skill93

in winter than in summer, and in general low performance for PP methods. The94

analog method showed as expected realistic PC loadings but failed to capture95

the individual daily patterns.96

In addition, stochastic PP methods that explicitly model spatial structure97

have been developed and analysed. Frost et al. (2011) evaluated correlations98

of occurrence and amount of daily precipitation at different locations obtained99
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from a Nonhomogeneous Hidden Markov Model (NHMM) for occurrence com-100

bined with conditional multiple regression for amounts, and from GLIMCLIM, a101

conditional multisite weather generator based on a generalised linear model, and102

found that both substantially underestimated intersite correlations. Hu et al.103

(2013) obtained similar results for GLIMCLIM, but found in contrast that a104

NHMM performed well. The difference can be a result of both the predictor105

choice, or the specific regional climate. A further method type are conditional106

multisite weather generators for precipitation constrained by the observed de-107

pendences between sites, which were found to represent the observed properties108

well (Cannon, 2008; Wilks, 2012).109

Disaggregation methods for precipitation investigated in Ferraris et al.110

(2003) show substantial over- and underestimations of intersite correlations with111

no method performing systematically better than others. However, advanced112

stochastic models for precipitation that include a disaggregation step based on113

two-dimensional, latent Gaussian fields showed realistic spatial characteristics114

(Paschalis et al., 2013).115

Recently several analog methods in which the analogs are based on a coarse116

resolution representation of the predictand variable rather than on the large-117

scale atmospheric circulation have been developed. There are different imple-118

mentations depending on how model biases are treated and on how the down-119

scaled field is constructed from a pool of analog situations; for a description of120

the frequently used ’localised constructed analog method’ (LOCA) and a dis-121

cussion of other variants see Pierce et al. (2014). They are implemented such122

that a common analog is chosen for adjacent locations and thus yield realistic123

spatial fields by construction if individual analogs are used and fairly realistic124

fields if weighted means of multiple analogs are used. An intercomparison of bias125

corrected constructed analogs (BCCA), of methods combining bias correction126

for monthly or daily fields and spatial disagregation (BCSDm, BCSMd), and127

of an asynchronous regression method is presented in Gutmann et al. (2014),128

who found that all methods but BCSDm substantially overestimate spatial cor-129

relations. The reason for the good performance of BCSDm is that in contrast130

to the other methods it inherits the spatial variability from the observations,131

rather than from the driving model.132

Recent developments also include multisite MOS methods. Bárdossy and133

Pegram (2012) found that RCM precipitation had too low intersite correlations134

and formulated a matrix and a sequential recorrelation method to adjust the135

spatial structure, with the former applicable to match Pearson correlations and136

the latter to reproduce more general copula-based representations of the mul-137

tivariate structure. The correction methods led to a realistic spatial structure,138

with the exception of an underrepresentation of clustering of extreme precipita-139

tion, allow for changes in the spatial dependences in a future climate, and mainly140

preserve the temporal structure of the RCM output. Cannon (2018) developed141

a multivariate quantile mapping method that yields the observed multivariate142

distribution, applied it to correct spatial RCM precipitation fields, and demon-143

strated realistic spatial characteristics of the corrected fields. There are also144

parametric quantile mapping methods that interpolate the observed distribu-145

tion parameters to high spatial resolution (Mamalakis et al., 2017), but as they146

do not model the spatial structure of variability they are essentially singlesite147

MOS methods.148

In the context of ensemble weather forecasting postprocessing methods have149
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been used that rearrange the simulated data in time so they have the same rank150

structure as the observations in a training period (known as Schaake Shuffle),151

which leads to a reproduction of the spatial and intervariable dependence struc-152

ture of the training data (Clark et al., 2004). The method has been employed to153

provide input for hydrological forecasts (Voisin et al., 2011) and to postprocess154

atmospheric reanalyses (Vrac and Friederichs, 2015). A drawback that makes its155

application in a climate change context problematic is that it is constrained to156

reproduce the temporal rank structure of the training dataset. Vrac (2018) has157

suggested a rank-based resampling method that relaxes this condition and also158

introduces stochasticity by generating as many multivariate corrected outputs159

as the number of statistical dimensions (i.e. number of grid-cells× number of160

climate variables). This study has also demonstrated how to apply the method161

in a climate change context. However, further research on the usefulness of the162

method for climate change studies is needed, for instance because the reshuffling163

breaks the physical consistency between large-scale atmospheric states and the164

postprocessed variables, and will usually modify the climate change signal.165

Our analysis extends these studies by considering a large number of down-166

scaling methods (47 for precipitation and 45 for temperature) and by systemati-167

cally comparing them with respect to several measures of spatial variability, us-168

ing validation datasets over Europe and Germany. The structure of DS methods169

can be expected to have a strong influence on the spatial variability of their out-170

put. Singlesite methods, which are fitted to individual target locations, might171

for instance yield a realistic spatial structure if the predictors explain a large172

fraction of the local variability, but might overestimate spatial correlations if173

small-scale variability is substantial and not adequately represented. A detailed174

analysis of the variance explained by each downscaling method is provided in175

Gutiérrez et al. (2018). Multisite DS methods, which simultaneously use sev-176

eral locations for model fitting, might either achieve realistic spatial variability177

through the common influence of predictors or through explicit constraints on178

the multivariate structure of noise components or of the final output. In our179

study we compare downscaling methods of different types which will allow us180

to investigate whether some types exhibit a common behaviour with respect to181

spatial variability. We note that the VALUE perfect predictor experiment uses182

an ensemble of opportunity in which most of the methods are fitted on single183

sites, reflecting the dominance of such methods in DS applications. In par-184

ticular, no method explicitly models spatial dependence in the European-wide185

experiment, although for some methods, spatial dependence results as a conse-186

quence of the use of common predictors (e.g. regression methods using PCs) or187

of the method characteristics (e.g. some analog methods using the same analog188

day for all sites). However, for the additional experiment over Germany, two189

regression methods that explicitly consider spatial dependence have contributed190

to the study.191

Section 2 starts with a discussion of the observations used for validation192

as well as of the downscaled data, including a brief overview of the different193

types of downscaling methods and of the experimental setup. It then continues194

with an explanation of the different measures for spatial variability employed195

to validate and compare the downscaling methods. Section 3 will present the196

validation results in separate subsections for each validation measure. Summary197

and conclusions will be given in section 4.198
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Figure 1: Locations of the reference stations for the European experiments (1a and
1a-RCM, black circles, VALUE-ECA-86-v2 dataset) and the German experiment (1c,
red, VALUE-ECA-53-Germany-spatial-v1 dataset).

2 Data and methods199

2.1 Observations and downscaled data200

The predictands for the DS methods are observations for daily precipitation201

as well as for daily minimum and maximum temperature at 86 stations across202

Europe. This VALUE-ECA-86-v2 dataset is a subset of the publicly available203

ECA dataset (Tank et al., 2002) and covers the period 1979 - 2008. Besides the204

European-wide experiment (referred to as experiment 1a, or simply exp 1a),205

which is the common experiment for the different validation studies, we also206

present here the results of an experiment based on a denser ECA subset of 53207

stations within Germany for the same variables (referred to as experiment 1c,208

or simply exp 1c), which was designed to focus on spatial validation aspects.209

Details on data availability are given in Gutiérrez et al. (2018). Both networks210

are shown in Fig. 1.211

The downscaling methods that have been considered in our study for precip-212

itation are listed in Table 1, those used for temperature in Table 2. The columns213

‘1a’ and ‘1c’ indicate the methods contributing to each of the experiments. All214

downscaling methods have been calibrated following a five-fold cross validation215

with non-overlapping consecutive 6-year blocks. Further details about the meth-216

ods and the experimental setup can be found in Maraun et al. (2015), Gutiérrez217
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et al. (2018), and on www.value-cost.eu/validation#Experiment_1a.218

We distinguish between PP and MOS methods (see e.g. Maraun et al.,219

2010)). For the former the statistical relationships are derived from observa-220

tions whereas MOS methods are fitted using predictors from RCMs (or global221

climate models). PP methods represent real-world links between large-scale222

predictors and the local predictand, and thus in applications to output from223

climate models they require realistically simulated predictors – hence the name224

’Perfect Prog(nosis)’. MOS methods represent relationships between simulated225

and observed variables, are therefore model-specific, and do not only repre-226

sent downscaling relationships but can also correct model biases. Unconditional227

weather generators (WGs), which are statistical models that produce timeseries228

with temporal characteristics similar to observations without any predictors are229

a third group of methods listed under ’WG’. Conditional WGs, which include230

meteorological predictors that influence the properties of the timeseries, should231

not be categorised as a separate group to MOS and PP, because depending on232

the setup for model fitting they either follow the PP or MOS approach, and are233

thus listed under either PP or MOS.234

The PP methods are validated in a perfect predictor setup using predictors235

from the ERA-Interim Reanalysis (Dee et al., 2011) for the period 1979 - 2008 on236

a coarse-grained 2◦ resolution, which is similar to typical output from global cli-237

mate models. The PP assumption for the predictors is thus met by construction.238

The MOS methods for the European experiment exp 1a are directly applied to239

the ERA-Interim data on both the original 0.75◦ and on the coarse-grained res-240

olution. We have conducted an additional European experiment exp 1a RCM241

for which the MOS predictors are taken from the RACMO RCM (van Meijgaard242

et al., 2008) driven by perfect boundary conditions from ERA-Interim on the243

original 0.75◦ resolution. For the German experiment exp 1c we have used MOS244

predictors from ERA-Interim on the original 0.75◦ resolution.245

The PP methods used here cover the widely used approaches, i.e. analog,246

regression and weather type methods; the MOS methods cover frequently used247

quantile mapping methods as well as recently developed stochastic MOS.248

Information on the structural elements of the DS methods that may influence249

the spatial characteristics of the ouput are also given in tables 1 and 2. The250

’MS’ column indicates whether the DS model has been fitted simultaneously for251

multiple (or all) locations (’yes’) or individually for each location (’no’). The252

’EX’ column lists whether the statistical model has explicit constraints on the253

structure of spatial variability (’yes’), for instance on correlations for adjacent254

locations. The ’ST’ column indicates whether the DS output contains stochastic255

noise (’yes’). The final column ’PC’ states whether or not principal components256

have been used as predictors. As already mentioned almost all of the methods257

are fitted and applied at single sites, with only some analog methods being258

applied to multiple sites. Note that methods that are fitted at individual sites259

might still be used for multiple sites if for instance realistic spatial patterns can260

be expected through the influence of the predictors.261

All methods participating in the European experiment are fully described in262

Annex 1 of Gutiérrez et al. (2018). We now describe the two additional methods,263

GLM-BN-DET and DSCLIM-D, contributing only to the German experiment.264

GLM-BN-DET is a multivariate extension of the GLM-DET method, which265

explicitly models the spatial structure of precipitation occurrence by considering266

a dependence graph linking marginally and/or conditionally dependent stations.267
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This graph allows to obtain a probabilistic model (a Bayesian network) which268

encodes all the dependences displayed in the graph by means of an appropriated269

factorisation of the joint probability distribution. This model allows simulating270

spatially consistent precipitation occurrences. Moreover, for each particular271

station, the model determines the set of stations (Markov blanket) exerting272

a spatial influence. For each station, this set is included as spatial predictors273

(in addition to the large-scale information) in the binomial/gamma GLM model274

thus the model yields spatially consistent precipitation amounts. Details on this275

particular methodology are given in Cano et al. (2004). DSCLIM-D is based276

on weather typing, combined with linear regression and weather analogs. The277

method has been introduced by Boé et al. (2006), but the version used here278

differs in some details. The implementations for temperature and precipitation279

are slightly different, and for brevity we explain only the latter case. DSCLIM-D280

uses a clustering method to determine weather types (10 in this implementation)281

in the SLP field. For each day the Euclidean distances of the SLP field to all the282

weather types are calculated and used as predictors for the square root of the283

precipitation anomaly at a given location in a multiple linear regression. The284

mean of the estimated precipitation over all stations in the target area is then285

used to define a set of analog days from which the downscaled local precipitation286

is chosen. The set is defined by the days in the fitting period that belong to the287

same weather type as well as have averaged precipitation in the same decile as288

the estimated averaged precipitation. We note that comparing deciles is similar289

to quantile mapping or inflated regression. In the deterministic version of the290

method, which is used here, one analog precipitation field is randomly selected,291

the stochastic version used several analogs.292
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Type Code Tech 1a 1c MS EX ST PC

MOS Ratyetal-M6 S × - no no no no
Ratyetal-M7 S × - no no no no
ISI-MIP S/PM × × no no no no
DBS PM × × no no no no
Ratyetal-M9 PM × - no no no no
BC PM × × no no no no
GQM PM × × no no no no
GPQM PM × × no no no no
EQM QM × × no no no no
EQMs QM × - no no no no
EQM-WT QM/WT × × no no no no
QMm QM × × no no no no
QMBC-BJ-PR QM × - no no no no
CDFt QM × - no no no no
QM-DAP QM × - no no no no
EQM-WIC658 QM × - no no no no
Ratyetal-M8 QM × - no no no no
MOS-AN A × - yes no no no
MOS-GLM TF × - no no yes no
VGLMGAMMA TF/WG × - no no yes no
FIC02P PM/A/TF × × no no no no
FIC04P PM/A/TF × × no no no no

PP FIC01P A/TF × × yes no no no
FIC03P A/TF × × yes no no no
ANALOG-ANOM A × - yes no no no
ANALOG A × × yes no no yes
ANALOG-MP A × × yes no yes no
ANALOG-SP A × - yes no yes no
MO-GP TF × - no no no no

GLM-P TF × × no no yes(a) no
MLR-RAN TF × × no no no no
MLR-RSN TF × × no no no no
MLR-ASW TF × - no no yes no
MLR-ASI TF × × no no no no
GLM-DET TF × × no no no yes
GLM TF × - no no yes yes
GLM-WT TF/WT × × no no yes yes
GLM-BN-DET TF - × yes yes no yes
DSCLIM-D A/WT - × yes no no no
WT-WG WT × - no no yes yes
SWG TF × - no no yes yes

WG SS-WG WG × - no no yes no
MARFI-BASIC WG × - no no yes no
MARFI-TAD WG × - no no yes no
MARFI-M3 WG × - no no yes no
GOMEZ-BASIC WG × - no no yes no
GOMEZ-TAD WG × - no no yes no

Table 1: Participating methods for precipitation for the European (exp1a) and
German experiment (exp1c). Techniques: A: analog; S: scaling; PM: parametric
quantile mapping; QM: empirical quantile mapping; TF: regression-like transfer
function; WT: weather typing; WG: weather generator. Columns 1a and 1c
indicate whether the methods have participated in the European and German
experiment. MS: Multisite fitting: MS; EX: Explicitly modelled spatial struc-
ture; ST: Stochastic noise; PC: PCs used as predictors. (a) Only occurrence is
randomised, amounts are based on inflated regression (in this case, the results
are based on a single realisation).
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Type Tech Code MS EX ST PC

MOS RaiRat-M6 S no no no no
RaiRat-M7 S no no no no
RaiRat-M8 S no no no no
SB S no no no no
ISI-MIP S/PM no no no no
DBS PM no no no no
GPQM PM no no no no
EQM QM no no no no
EQMs QM no no no no
EQM-WT QM/WT no no no no
QMm QM no no no no
QMBC-BJ-PR QM no no no no
CDFt QM no no no no
QM-DAP QM no no no no
EQM-WIC658 QM no no no no
RaiRat-M9 QM no no no no
DBBC QM no no no no
DBD QM no no no no
MOS-REG TF no no no no
FIC02T PM/A/TF no no no no

PP FIC01T A/TF yes no no no
ANALOG-ANOM A yes no no no
ANALOG A yes no no yes
ANALOG-MP A yes no yes no
ANALOG-SP A yes no yes no
MO-GP TF no no no no
MLR-T TF no no no no
MLR-RAN TF no no no no
MLR-RSN TF no no no no
MLR-ASW TF no no yes no
MLR-ASI TF no no no no
MLR-AAN TF no no no no
MLR-AAI TF no no no no
MLR-AAW TF no no yes no
MLR-PCA-ZTR TF no no no yes
MLR TF no no no yes
MLR-WT TF/WT no no no yes
WT-WG WT no no yes yes
SWG TF no no yes yes

WG SS-WG WG no no yes no
MARFI-BASIC WG no no yes no
MARFI-TAD WG no no yes no
MARFI-M3 WG no no yes no
GOMEZ-BASIC WG no no yes no
GOMEZ-TAD WG no no yes no

Table 2: Participating methods for temperature for the European experiment
(exp1a). Techniques: A: analog; S: scaling; PM: parametric quantile mapping;
QM: empirical quantile mapping; TF: regression-like transfer function; WT:
weather typing; WG: weather generator. Multisite fitting: MS; EX: Explicitly
modelled spatial structure; ST: Stochastic noise; PC: PCs used as predictors.
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2.2 Validation measures293

We now discuss the different validation measures on which the method compar-294

ison is based. All computations have been done in R and the codes are publicly295

available at Santander Meteorology Group (2016).296

2.2.1 Correlations297

Pairwise cross-correlations among all pairs of stations (n × n−1
2 pairs, n being298

the number of stations) are computed for the different target variables and299

seasons (Spearman for precipitation and Pearson for temperatures), and for300

experiments 1a and 1a-RCM (n = 86) and 1c (n = 53). For the temperature301

data the seasonal cycle of each data series is removed prior to correlation analysis302

by subtracting the climatological mean for each particular day of the year based303

on the whole analysis period 1979-2008. The mean is based on a circular moving304

average with a window width of 31 days centred around the target day. The305

precipitation data are used in their original form. In both cases, no detrending306

has been used. In addition to the visual comparison of correlation matrices307

we calculate the correlation matrix distance (CMD, Herdin et al., 2005). It308

measures the similarity between two correlation matrices and is defined as one309

minus the inner product of the normalised vectorized matrices. For matrices310

that are identical up to a scaling factor, the CMD is zero and for very different311

matrices, for which the associated vectors are orthogonal, the CMD is one.312

Station correlograms are then derived by plotting the cross-correlation value313

for each station pair against their respective (great circle) geographical dis-314

tances. As the resulting cloud of points may hinder a quick assessment of the315

dependency of the correlations on distance, we fitted reference curves to each316

correlogram using a local polynomial fit (“loess”, degree 2), allowing for a bet-317

ter comparability between downscaling methods and against the reference data.318

The local fit was preferred to other correlogram global fitting models commonly319

used in geostatistics (e.g. exponential or spherical; see e.g. Hengl, 2007)), as it320

does not require a priori assumptions about the structure of the correlations.321

It is therefore suitable for different kinds of correlation structures and flexible322

enough to allow for a direct comparison across different downscaling methods323

and experiments. As a measure for the overall behaviour of the fitted curves we324

then calculated correlation lengths (CL) for certain representative thresholds,325

as the abscissa of the point of intersection of the correlation threshold with the326

fitted line. We tested different thresholds, and the final values used are given in327

Table 3. The CL biases for the predictions were calculated as the difference of328

the CL for a given method and the CL of the observations (Table 4). This bias329

is a simple measure for the difference in the correlation structure between the330

predictions and the observations.331

2.2.2 Spatial degrees of freedom332

We determine the number of independent spatial degrees of freedom (DOF) that333

are associated with the observations and with the downscaling products. DOFs334

quantify the complexity of time- and space-dependent datasets and are based on335

the correlation or covariance matrix. In addition to describing the dependency336
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Var. Exps. 1a and 1a-RCM Exp. 1c
Precip 0.35 0.50
Tmin 0.50 0.65
Tmax 0.50 0.65

Table 3: Correlation thresholds used for calculating correlation lengths in the Euro-
pean experiments (1a and 1a-RCM) and in the German experiment (1c).

Exps. 1a and 1a-RCM Exp. 1c
Var. annual DJF JJA MAM SON annual DJF JJA MAM SON
Precip 495 527 429 475 540 404 546 310 393 417
Tmin 741 822 647 771 653 569 695 462 541 475
Tmax 873 1005 785 893 870 698 788 697 653 668

Table 4: Correlation length (CL) values (in km) calculated from the correlograms of
the reference station datasets (VALUE-ECA-86-v2 for experiments 1a and 1a-RCM,
and VALUE-ECA-53-Germany-spatial-v1 for experiment 1c).

of the correlations on distance by a single number (CL) we thus also use a single337

number to capture a key property of the correlation matrices themselves and338

then calculate its biases.339

One possible way to define complexity is to consider the eigenvalue spec-340

trum of the covariance or correlation matrix. Consider a situation where the341

timeseries at all locations are perfectly correlated, which means there would be342

only one independent variable. In this case one PC (e.g. Hannachi et al., 2007)343

would explain all the variance, i.e. the first eigenvalue of the covariance matrix344

would be equal to the total variance and all other eigenvalues would be zero.345

If, in the other extreme case, the timeseries at all locations were independent,346

the eigenvalue spectrum would be completely flat, as no correlations between347

the station records could be exploited to construct any PCs that explain more348

variance than an individual station record. Roughly speaking, the steepness of349

the eigenvalue spectrum can thus be taken as an indication for the complex-350

ity of the data, with a steep (flat) spectrum being associated with low (high)351

complexity.352

An alternative way to define the complexity of a space- and time-dependent353

field ψi(t) is to consider the timeseries of the spatial sum of the squares of the354

values at the individual locations i, i.e.355

E(t) =

n∑
i=1

ψ2
i (t) (1)

with n being the number of locations. For independent variables E(t) has a χ2-356

distribution with N degrees of freedom, for dependent variables the distribution357

is well approximated by a χ2 distribution with fewer degrees of freedom. A useful358

measure of complexity is obtained by asking how many independent variables359

are needed to obtain approximately the same χ2 distribution, which is defined360

by its mean and variance, as for the timeseries of the sum of squares of the361

dependent variables.362

This approach has been reviewed by Bretherton et al. (1999) who have shown363
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that for normally-distributed PCs the χ2 and the eigenvalue approaches are364

equivalent if, as suggested in earlier studies, the degrees of freedom (DOF) are365

calculated from the eigenvalue spectrum by:366

DOF =
(
∑
i λi)

2∑
i λ

2
i

(2)

where λi is the i-th eigenvalue and the summation is over all the eigenvalues.367

In this paper we follow the computationally easier eigenvalue approach and368

calculate the independent spatial degrees of freedom according to equation 2.369

The normality assumption has been checked in the reference observation dataset370

VALUE-ECA-86-v2 (see Sec. 2.1), by comparing the empirical distribution func-371

tion of each PC against the cumulative distribution function of the normal372

distribution using the Kolmogorov-Smirnov test, implemented in the function373

ks.test of the R package stats (R Core Team, 2018). All PCs were found374

to be indistinguishable from a normal distribution at the 5% significance level.375

The singular value decomposition implementation used in the (function svd in376

the R package stats R Core Team, 2018)) cannot handle missing values in377

the covariance matrix, and a few methods yielding missing values for all data378

in some stations did thus not yield results (this will be later indicated in the379

corresponding figure captions).380

For consistency with the analysis of correlation lengths (Sec. 2.2.1), we base381

the DOFs on the eigenvalues of the correlation rather than the covariance ma-382

trix. In other words, we calculate the DOFs for standardised data, where the383

timeseries at each location have the same variance. The seasonal cycle is sub-384

tracted in the same way as for the correlation analysis. The DOFs for the385

observations, which are the reference for calculating DOF biases, are given in386

Table 5.387

DJF MAM JJA SON
precip 30.02 41.51 48.64 36.05

tmin 6.56 7.66 9.43 8.86
tmax 5.65 6.56 7.55 6.91

Table 5: Degrees of freedom (DOF) for daily precipitation, minimum and max-
imum temperature from the VALUE-ECA-86-v2 observation dataset.

2.2.3 Joint threshold exceedances388

The correlation-based analyses discussed above investigate the strength of lin-389

ear relationships between the timeseries at different locations. However, for390

users of the downscaled data it may often be also relevant to know whether the391

probabilities for joint exceedance of a certain threshold at different locations are392

realistic in the downscaled data. Typical examples are the joint occurrence of393

precipitation or of heavy precipitation. For brevity, we restrict the analysis of394

such joint threshold exceedances to precipitation. This is the most challenging395

case since temperature fields are typically much smoother and spatially homo-396

geneous. Therefore, we consider two typical cases: the wet day threshold of 1397

mm/day and exceedance of thresholds for high precipitation, namely the local398

90th percentile.399
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The most direct way to analyse the dependence between the data Xi, Xj at400

a pair of stations {i, j} for exceeding a threshold x0i at location i and x0j at401

location j, is subtracting the product of marginals P (xi ≥ x0i) · P (xj ≥ x0j)402

from the joint probability P (xi ≥ x0i, xj ≥ x0j). Their difference is zero only in403

case that P (xi ≥ x0i) and P (xj ≥ x0j) are totally independent and the larger404

the value, the more dependent they are. However, this difference would not405

only be influenced by the dependence for threshold exceedance, but also by the406

marginal probabilities at each of the stations, and is thus not a useful measure407

for the dependence itself.408

A more suitable framework is based on the Mutual Information (MI) which409

measures the dependence between two random variables X,Y and is unaffected410

by their marginal distributions. It is a standard approach in probability and in-411

formation theory (see e.g. Hlinka et al., 2014), and for discrete random variables412

is defined as:413

MI(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) · log

(
p(x, y)

p(x) · p(y)

)
(3)

MI is zero if the two events are independent, i.e. if p(X,Y ) = p(X) · p(Y ),414

non-negative (MI(X,Y ) ≥ 0) and symmetric (MI(X,Y ) = MI(Y,X)).415

In our analysis we consider the binary variables Ψi at the locations i which416

state whether the precipitation xi is above or below the threshold x0i, i.e. ψi = 1417

if xi ≥ x0i and ψi = 0 if xi < x0i. Following the definition above we then418

calculate for each pair of locations i, j the MI for these binary variables419

MIi,j = MI(Ψi,Ψj) =
∑

ψi∈[0,1]

∑
ψj∈[0,1]

(p(ψi, ψj) · log

(
p(ψi, ψj)

p(ψi) · p(ψj)

)
(4)

We calculate MI for the dry-wet threshold x0i = 1mm/d as well as for a420

high precipitation threshold defined as the 90th percentile (P90i) of the observed421

daily precipitation (including dry days) at each station, i.e. x0i = P90i.422

Following the methodology for correlograms (see section 2.2.1), we plot each423

MIij against the distance of the locations i, j and fit a degree-2 loess curve to424

the resulting plots. We then define MI thresholds for calculating the MI lengths425

(MILs) for observations and for the different downscaling methods. For the dry-426

wet binary variable based on x0i = 1mm/d we use MI thresholds that depend427

on the experiment and season in order to obtain observed MILs that are similar428

(within a few kilometers) to the observed CLs, which makes it easier to assess429

whether MI yields information about the methods that is not already included in430

the CLs. The respective values are given in Table 6. For the high precipitation431

threshold x0i = P90i we use a constant MI threshold of 0.1. Analogous to432

the correlation analysis MIL biases are calculated for the different downscaling433

methods, seasons and experiments by subtracting the respective observed MIL.434

2.2.4 Regionalisation435

Note that in this study, we apply the term regionalisation in the sense of spatial436

clustering, i.e. in the sense of finding regions with common variability. In order437

to achieve a regionalisation of the station data, orthogonally rotated (Varimax438

criterion, S-mode) principal component analysis (RCPA, e.g. Richman, 1986;439

15

Accepted manuscript. International Journal of Climatology (Jan 2019). DOI: 10.1002/joc.6024



Experiments annual DJF JJA MAM SON
1a, 1aRCM 0.18 0.14 0.20 0.18 0.20

1c 0.24 0.22 0.24 0.22 0.24

Table 6: MI thresholds used to calculate the MI lengths for the precipitation oc-
currence (1 mm threshold in the European experiments (1a and 1a-RCM) and the
German experiment (1c).

Hannachi et al., 2007) is applied separately for each season to the correlation440

matrices calculated from detrended monthly timeseries.441

The decision on the number of PCs to be rotated is based on the criterion442

that each retained PC has to be representative for at least one input variable,443

following Philipp et al. (2007). A rotated PC is considered representative for a444

given station if the loading of this PC at this station is larger than the loadings445

of the other PCs at this station by at least one standard deviation of all loadings446

at this station; additionally, this loading has to be statistically significant at the447

5% level. Each station is assigned to the region (as defined by RPCA) for which448

it has the highest PC loading.449

The number of PCs is determined from observations. Then the same num-450

ber of PCs is used for the PCAs of the output from the downscaling methods.451

Following a standard approach the observed and the downscaled groupings are452

compared using the Adjusted Rand Index (ARI, Hubert and Arabie, 1985; San-453

tos and Embrechts, 2009). The ARI is based on how pairs of objects, which in454

our case are pairs of locations, are classified as being either in the same or in455

different groups, which in our case are homogeneous regions. When comparing456

two classifications U and V there are four options for each pair and we denote457

the number of pairs for each option as:458

a number of pairs that are in the same group in both classifications459

b number of pairs that are in the same group in U and in different groups460

in V461

c number of pairs that are in the same group in V and in different groups462

in U463

d number of pairs that are in different groups in U and in different groups464

in V465

With these definitions, and n being the number of objects, the ARI can be466

expressed as467

ARI =

(
n
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
n
2

)2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]
. (5)

Its value increases with the agreement of the two classifications; 0 indicates no468

agreement and the maximum is 1 for identical classifications.469

As already mentioned in Sec. 2.2.2 the singular value decomposition routine470

used for PCA cannot handle missing values, and therefore the regionalisation471

could not be calculated for a few methods.472
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3 Results473

3.1 Example situation474

Before we present the results of the statistical analyses we give an example475

for observed and downscaled precipitation on a specific day and for a few se-476

lected methods to illustrate the different characteristics of downscaling methods477

(Fig. 2). We chose 15. August 1998, because on this day there was frontal pre-478

cipitation (over parts of the Scandinavia and the Baltic) as well as convective479

precipitation (over the Iberian Peninsula and parts of northern Italy). The dis-480

tinction is based on the analysis of pressure charts and vertical temperature481

profiles (not shown).482

The precipitation observations show low to medium values at most stations483

in Northern Spain and at one station in northern Italy, while the values in Scan-484

dinavia and the Baltic are medium to high. The ERA Interim reanalysis partly485

underestimates the amplitudes, shows a continuous rain band south of the Alps486

whereas only one station has recorded rainfall in this region, and does not sim-487

ulate the convective precipitation in central Iberia. In comparison the RACMO488

regional model simulates the intensities in some regions better, for instance over489

Iberia and Scandinavia, but shows the well-known drizzle effect with light pre-490

cipitation over large areas, as well as an unrealistic rain band north of the Alps491

and over parts of Germany and France. We note that satellite pictures showed492

convection over Germany, which however was not associated with precipitation.493

As expected the two quantile mapping methods EQMs (empirical) and RATY494

(parametric) inherit the partly unrealistic spatial structure from RACMO but495

change the specific values, with the EQMs intensities being in general closer to496

the observations than those from RATY.497

The ANALOG-ANOM method captures well the fact that the convective498

precipitation only occurs at some locations and that the frontal precipitation is499

more homogeneous in space. The individual locations at which the convective500

precipitation occurs are partly different to the observations, which is an expected501

consequence of the stochastic nature of occurrence of convection. The values for502

the convective precipitation are close to the observed ones, whereas the intensity503

of the frontal precipitation is underestimated.504

The MLR-RAN method (PP, multiple linear regression using large-scale pre-505

dictors) unrealistically yields precipitation at all locations with the exception of506

some stations close to the eastern boundary of the analysis domain. For the sta-507

tions where precipitation was observed the intensities are roughly in the right508

range. For the WT-WG method (weather generator conditioned on weather509

types) one can either plot individual realisations or the average over a simu-510

lated ensemble (100 realisations in this case). The individual realisations (not511

shown) have a much too low spatial coherency. This indicates that the random512

variability component, which is sampled individually at each location, is large513

compared to the fraction of variability that is conditional on the weather types.514

Here we show the conditioned component, i.e. the averaged values, which is515

as expected, too smooth, with precipitation occurring almost everywhere and516

values at the locations with observed precipitation being often too low.517

In summary, the examples suggest that the methods that either inherit the518

spatial structure from an RCM (EQMs and RATY) or use observed spatial struc-519

tures (ANLOG-ANOM) yield relatively realistic spatial patterns. In contrast520
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conditioning precipitation at single sites on large-scale predictors (MLR-RAN,521

WT-WG) leads to fields that are too smooth when only the conditioned com-522

ponent is considered (MLR-RAN, averaged WT-WG), or not smooth enough523

when the stochastic component is added (individual realisations of WT-WG).524

3.2 Correlations525

Selected examples of pairwise cross-correlation matrices for winter (DJF) are526

displayed in Figs. 3a and 3b for precipitation and maximum temperature re-527

spectively. The 86 European stations (Fig. 1) are arranged so that station pairs528

with a small distance are near to the diagonal while distant pairs are near the529

upper-left corner. The geographic distances (measured along a great circle) are530

shown in the upper triangle in the first matrix of each panel, while the observed531

correlations are shown in the lower triangle.532

In general, all methods are able to reproduce to some extent the correlation533

structure of both temperature and precipitation, with the exception of WT-WG.534

The WT-WG correlations shown are the average of the correlations for individ-535

ual realisations (in contrast to Fig. 2 where correlations for ensemble-averaged536

values are shown), and despite the conditioning of the weather generator on537

weather types it yields almost uncorrelated values for all stations, regardless of538

their distance. This is explained by the weak conditioning imposed by the only539

predictor (SLP) used in this method, which explains only a very small frac-540

tion of the variance and results in an almost purely stochastic method (see also541

Gutiérrez et al. (2018)). The correlations of raw ERA-Interim and RACMO542

output are both in good overall agreement with the observations. However, the543

results for the different methods differ in detail. For instance, MLR-RAN sys-544

tematically yields too high positive and negative correlations for distant station545

pairs, while EQMs and in particular ANALOG-ANOM reproduce most aspects546

of the structure well. The latter has the highest CMD value for precipitation547

(0.988) and maximum temperature (0.992).548

We now investigate the dependency of correlations on distance more system-549

atically by comparing correlograms and CL values. The former are shown for550

some example methods in Fig. 4 for the European station network (experiments551

1a and 1aRCM) and in Fig. 5 for the high-density German network (experiment552

1c). In addition to the actual correlations these figures include the fitted curves553

and the CLs (vertical lines). As expected the observed correlations (upper-left554

panels) decline with distance and for the European dataset level off around zero.555

The fact that the correlations show approximately an exponential decrease in556

Fig. 4 but a more linear decrease in Fig. 5 is due to the different size of the557

analysis domains. In experiment 1c there are some missing CL values for tem-558

peratures, because due to the small analysis domain and the smooth topography559

the temperature records are highly correlated for all station pairs and in some560

cases the fitted line is therefore above the corresponding correlation threshold561

(0.65, Table 3) for all distances. In contrast precipitation has a higher degree562

of spatial heterogeneity and CLs are obtained in all cases.563

For the European data (Fig. 4) ERA-Interim tends to slightly overestimate564

the correlations in both seasons and reproduces the observed slight difference be-565

tween the seasons. RACMO has values closer to reality, but does not capture the566

observed seasonal difference. Both MOS methods (EQMs-R and Ratyetal-M8-567

R) further reduce the correlations compared to the raw RCM but to a different568
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extent, and the lack of a seasonal difference remains. As expected, the ana-569

log method (ANALOG-ANOM), which selects an entire analog field reproduces570

the observed correlations. The PP example method (MLR-RAN), which uses571

large-scale predictors, overestimates correlations. As already shown in Fig. 3a572

the weather generator conditioned on weather types (WT-WG) strongly un-573

derestimates correlations when individual realisations are considered. For the574

ensemble average (dashed lines) the correlations are too high in winter and still575

substantially too low in summer. The deficiencies of this method have also been576

reported in Gutiérrez et al. (2018).577

It can be seen in Fig. 5 that in Germany and on the shorter distances, which578

are resolved well by the high-density network, the observed seasonal differences579

are larger than in the European case, with higher correlations in winter. All ex-580

ample methods do now also show a seasonal difference. As in the European case581

ERAINT overestimates correlations. The MOS-corrected ERA-Interim precip-582

itation (EQM-R) leads to fairly realistic correlations, as does one of the PP583

methods (DSCLIM-D), while the other ones either overestimate (GLM-DET)584

or underestimate (GLM-BN-DET) correlations. As explained in section 2.1,585

the latter is an extension of the former, explicitly including a model for spatial586

dependence (based on probabilistic networks).587

We now look at the full set of methods with respect to the precipitation CL588

bias for the European (Fig. 6) and German datasets (Fig. 7). In Fig. 6 ERAINT589

has a positive CL bias, which gets reduced when the reanalysis is dynamically590

downscaled with RACMO, as already seen in the previous figures. Most deter-591

ministic MOS methods do reduce the bias both in the reanalysis-driven (*-E)592

and RACMO-driven (*-R) case, with the former still having higher CLs than the593

latter, as for the raw numerical models. Many MOS methods that are based on594

quantile mapping have very low CL biases, while some of the scaling approaches595

(e.g. Ratyetal-M7) have slightly higher biases. Consistent with the previous596

plots, the stochastic methods (MOS-GLM, VGLMGAMMA) have substantial597

negative CL biases for the individual realisations. The bias for the ensemble598

mean is positive for MOS-GLM, while it is negative for VGLMGAMMA, sug-599

gesting that for the latter the distributions are not constrained closely enough600

by the predictands.601

The PP methods in Fig. 6 show a wide range of positive and negative bi-602

ases. Positive biases occur for regression methods with large-scale predictors603

(MLR-RAN, MLR-RSN, MLR-ASI, GLM-DET) because the predictors for dif-604

ferent stations are similar (e.g. PCs from ERA-Interim fields). The FIC01P605

method, which is a combination of an analog method and postprocessing us-606

ing a transfer function, has also a positive bias. In contrast, negative biases607

are visible for methods that use local predictors, e.g. information taken from608

the gridcell covering the target station, for instance some of the linear mod-609

els (GLM, GLM-WT, GLM-P) and the ’multi-objective genetic programming610

method’ (MO-WT). The ANALOG method, which is based on regional-scale611

predictors shows a negative CL bias. Individual realisations of some stochastic612

methods (ANALOG-M, ANALOG-SP, GLM-P) have also negative biases. Bi-613

ases close to zero are achieved with one analog method (ANALOG-ANOM) and614

a regression method with noise added (MLR-ASW).615

When the CL biases on shorter distances are considered (Fig. 7) the raw616

ERA-Interim precipitation shows again a positive bias, while biases close to zero617

are obtained for MOS methods based on quantile mapping. For the PP methods618
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the positive biases of regression methods using large-scale predictors and the619

negative bias for those using local predictors remain. The ANALOG method is620

now almost bias-free, in contrast to the European case. The reason is that the621

predictors are neither global, nor completely local, but based on the division622

of the whole domain in a number of sub-domains with each containing several623

stations. The selection of analog dates is common for all stations within a sub-624

domain, thus guaranteeing the spatial consistency within sub-domains, whereas625

different dates can be chosen for different sub-domains. As Germany lies within626

one sub-domain and Europe covers several subdomains the CL bias is close to627

zero for experiment 1c (sampling effects remain) and negative for experiment628

1a. The second method that is bias-free is a hybrid method (DSCLIM-D) which629

combines a weather type based transfer function and an analog approach.630

For the European dataset we also consider the CL bias for minimum and631

maximum temperature (Figs. 8 and 9). As temperature fields are smoother than632

precipitation fields, we use a correlation threshold of 0.5 rather than 0.35, which633

was used for the European precipitation data. The results for minimum and634

maximum temperatures are very similar. The MOS results are fundamentally635

different from the precipitation case. While for precipitation many MOS meth-636

ods did reduce the CL bias relative to the raw models (both for ERAINT and637

RACMO), for temperature there is for almost all MOS methods no reduction of638

the positive model bias. The reason might be that precipitation is an intermit-639

tent process for which debiasing the marginal distribution affects correlations640

more strongly than for the continuous temperature timeseries. The high biases641

for CDFt-E and MOS-REG-R need further investigation. The CDFt method642

was also found to behave differently to other MOS methods with respect to643

the temporal correlation between predictions and observations (Gutiérrez et al.,644

2018), trends (Maraun et al., 2018) and extreme events (Hertig et al., 2018).645

We note that this method is different from the other MOS techniques in the646

sense that it also uses the predictand distribution in the validation period (see647

Gutiérrez et al. (2018), Appendix A.1 for the full method description), which648

may lead to a high sampling variability in our experimental setup. The CDFt649

data passed our standard quality test, but the correlation vs. distance plots for650

CDFt for maximum and minimum temperatures and experiment 1a showed an651

unusual behaviour with no clear link between correlations and distance, and652

thus a technical error for downscaled temperatures using CDFt-E cannot be653

ruled out.654

As for precipitation the PP methods show again in general higher biases than655

the MOS methods, and some analog methods perform well, whereas others do656

not. A noticeable difference is the smaller number of methods with negative657

biases for temperature. Although the set of methods is not identical, there are658

some methods used for both predictor variables that have large negative biases659

for precipitation but small biases for temperature, namely ANALOG-SP and660

MO-GP. A potential reason is that for those methods the predictors constrain661

temperature better than precipitation.662
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VALUE_ECA_86 ERAInt-075

RACMO0.11 EQMs-RCM

RATY-RCM ANALOG-ANOM

MLR-RAN WT-WG

15 Aug 1998

Figure 2: Observed (VALUE-ECA-86-v2, top-left panel) and downscaled precipitation
on 15. August 1998 (mm/d). The second and third panels (from top to bottom, and
left to right) show the 24h accumulated precipitation from the ERA-Interim reanalysis
(ERAint-075 panel) and from the RACMO RCM (0.11 degree horizontal resolution,
RACMO 0.11 panel) driven by ERA-Interim The downscaling methods are labelled
by their codes (Table 1), with the “-RCM” suffix indicating MOS methods used in
experiment 1a-RCM.
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(a) Daily DJF precipitation (Spear-
man’s ρ correlation coefficient)

(b) Daily DJF maximum temperature
(Pearson’s r correlation coefficient)

Figure 3: Pairwise cross-correlation matrices for winter for the 86 locations of the
VALUE-ECA-86-v2 dataset. In each panel, the first matrix represents the geographic
distances between pairs of stations (above the diagonal) and the correlations of the
observations (below the diagonal). The remaining matrices display the correlations for
two different methods indicated by the panel titles with the values for the first (second)
method given above (below) the diagonal. The number under the method names is
one minus the correlation matrix distance between the method and the observation
correlation matrices.
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Figure 4: Correlograms for daily precipitation for JJA and DJF showing correlations
of the timeseries for each pair of stations against their geographical distances (Eu-
ropean experiment, exp1a). For the stochastic WT-WG method the fitted curves of
the averaged option and the corresponding CL value are indicated by dashed lines
(individual values are omitted for clarity).
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Figure 5: Same as Fig. 4 but for selected methods used in the German experiment
(exp1c). The correlations for the reference observations (VALUE-ECA-53-Germany-
spatial-v1) are shown in the upper left panel.
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Figure 6: Correlation length (CL) biases for daily precipitation from the downscaling
methods tested in experiments 1a (suffix −E for MOS methods) and 1a-RCM (suffix
−R) with respect to the reference values based on the VALUE-ECA-86-v2 dataset
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terisks) and individual (circles) approaches are shown. The box in the lower part of
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Figure 8: Same as Fig. 6 but for minimum temperature.
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Figure 9: Same as Fig. 8, but for maximum temperature.
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Figure 10: Bias of the spatial degrees of freedom (DOF) for daily precipitation
from the methods included in the European experiments (exp1a and exp1a-
RCM).

3.3 Spatial degrees of freedom663

The DOF biases for precipitation, which express differences in the dimensional-664

ity of the fields, are shown in Fig. 10. Almost all MOS methods have a negative665

bias and thus underestimate complexity. The underestimation is strongest in666

summer, where convective, and thus small-scale, precipitation is more impor-667

tant than in the other seasons. Compared to the raw model results, most MOS668

methods reduce the absolute bias. The exception are some of the stochastic669

methods (MOS-GLM, VGLMGAMMA), which strongly overestimate complex-670

ity. The MLR-based PP methods also underestimate complexity, whereas some671

of the analog methods have a small bias and others overestimate it. The weather672

generators show a strong overestimation.673

The DOF biases for temperature are shown in Fig. 11. For almost all down-674

scaling methods they are substantially smaller than for precipitation, with many675

MOS and some PP methods leading to biases smaller than 2. The exception676

are some WG methods (SS-WG, GOMEZ-BASIC, GOMEZ-TAD), which show677

biases of up to 40. During summer and autumn the DOF biases for minimum678

temperature are larger than those for maximum temperature. In contrast to679

the precipitation case the biases for the MOS-corrected models are very similar680

to those of the raw models.681

Most methods with a positive (negative) CL bias, i.e. those for which corre-682

lations drop too slowly (too quickly), have a negative (positive) DOF bias. One683

clear exception is CDFt-E for temperature, which is in line with other MOS684

methods with respect to the underestimation of the DOFs, but as mentioned in685

Sec. 3.2 has a large negative CL bias, which may be due to technical errors. We686

note that reordering the stations would not affect the DOFs, but would lead to687

erroneous correlograms if not taken into account when calculating the distances688

between station pairs. There are also some MOS methods that have a slightly689

positive CL bias despite their negative DOF bias.690
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Figure 11: Same as Fig. 10, but for daily temperature. The methods marked
with a cross (×, coloured according to the season) are out of range with positive
bias of more than 10 degrees of freedom. The methods without results are those
having missing values in the covariance matrix (see Sect. 2.2.2).
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3.4 Joint threshold exceedances691

The methodology for the joint threshold exceedances analysis is very similar692

to that for correlation (see Sec. 2.2.3), and we therefore do not show the MI693

matrices and MI vs. distance diagrams. The characteristic MI lengths for the694

reference observations exceeding the wet day threshold are presented in Tab. 7695

and for exceeding the local 90th percentile in Table 8. As in the case of the696

correlograms, lower MIL values indicate a faster loss of mutual dependence as697

a function of distance, while higher MIL values indicate a stronger dependence698

between stations. For both thresholds there is a marked seasonal dependence,699

with the minimum in summer and the maximum in winter. For the 90th per-700

centile autumn values are also high. The MILs obtained from the European and701

the German observational datasets were similar (Table 7).702

The high-density German dataset is better suited than the European dataset703

for calculating MILs for both thresholds, as it has a larger number of station704

pairs within the distance ranges relevant for calculating the MILs for both705

thresholds, and thus provides more robust results. We therefore restrict the706

MIL analysis to experiment 1c. This has the additional advantage that we707

avoid a potential loss of robustness in the summer results arising from locations708

with no precipitation for the whole season, which may occur in some parts of709

Southern Europe. The biases for the wet day threshold with respect to the ob-710

served reference values are shown in Fig. 12 and for the 90th percentile threshold711

in Fig. 13.712

For the wet day threshold all MOS methods slightly overestimate the depen-713

dence. The exceptions are FIC02P, which strongly overestimates it, and FIC04P,714

which in most seasons slightly underestimates it. All MOS methods but FIC02P715

reduce the bias compared to the raw reanalysis data. Among the PP methods716

ANALOG and DSCLIM-D (which contains an analog step) are bias-free apart717

from sampling effects, and the individual realisations of ANALOG-MP has also718

a very low bias. The MLR methods overestimate the dependence, whereas719

GLM-P strongly underestimate it.720

The different downscaling methods perform similarly with respect to the721

MIL biases for the wet day threshold and to the CL biases (Fig. 7). Both show722

a bias reduction by most MOS methods, and the same sign and relative size of723

the bias for both quantities. Too strong (weak) correlations of the timeseries724

are thus associated with too high (low) dependences of the occurrence of wet or725

dry days.726

The overall picture is different for the 90th percentile threshold. Almost all727

MOS methods show the same overestimation of dependence as the raw reanalysis728

data. In the PP group the analog methods and GLM-BN-DET and DSCLIM-729

D have very low biases, whereas the MLR methods very strongly overestimate730

dependences for heavy precipitation.731
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Experiments annual DJF JJA MAM SON
1a, 1aRCM 359 554 216 324 340

1c 338 528 256 360 345

Table 7: Mutual Information Length (MIL) values (in km) calculated for exceedance of
the wet day threshold of daily precipitation in the reference station datasets (VALUE-
ECA-86-v2 for experiments 1a and 1a-RCM and VALUE-ECA-53-Germany-spatial-v1
for experiment 1c), using the MI thresholds displayed in Tab. 6.

annual DJF JJA MAM SON
191 284 109 183 234

Table 8: Mutual Information Length (MIL) values (in km) calculated for exceedance of
the 90th percentile of daily precipitation in the reference station dataset of experiment
1c (VALUE-ECA-53-Germany-spatial-v1, using a fixed threshold of 0.1 for all seasons.
Note that only the experiment 1c (German dataset) has been used in this case as
reference (see Sec. 3.4).
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3.5 Regionalisation732

The number of PCs retained for rotation is shown in Table 9 along with the733

cumulative fraction of variance explained for the observed daily precipitation,734

minimum and maximum temperature at the 86 European stations. As expected735

a higher number of PCs is needed to explain a certain fraction of the variability736

of precipitation compared to temperature, as the spatial patterns of the former737

contain more small-scale structures. Also, more PCs are needed to represent738

precipitation well in summer and spring than in autumn and winter, due to739

the higher contribution of small-scale, convective precipitation in the former740

seasons, and the dominance of large-scale, stratiform precipitation in the latter.741

The fact that the retained PCs do not explain all the variance in the datasets742

is one of the potential reasons for differences between the rotated EOFs in the743

observations and the downscaling results.

Var. DJF MAM JJA SON
Precip 13 (78.3) 15 (71.4) 19 (71.4) 13 (71.8)
Tmin 6 (85.8) 6 (85.1) 6 (82.3) 6 (81.4)
Tmax 6 (87.2) 6 (87.3) 6 (86.5) 5 (82.0)

Table 9: Number of principal components retained for rotation and cumulative vari-
ance (in parentheses, %) for precipitation, minimum and maximum temperature at
the 86 stations of the ECA-VALUE-86-v2 observation dataset.

744

For temperature 5-6 PCs are retained and thus 5-6 regions are identified.745

The regions for maximum temperature in the different seasons are shown in746

Fig. 14. Europe is divided roughly intp northern Europe, north-western Eu-747

rope, south-western Europe, central and southern Europe, eastern Europe, and748

south-eastern Europe. The boundaries between the regions are to some extent749

seasonally dependent. They are also not always simply connected geographical750

regions, as for instance in autumn and spring one station in northern Italy is751

grouped together with the south-western stations, or in winter the UK, Germany752

and the Alpine regions contain stations associated with different rotated PCs.753

Similar regions are found for minimum temperature, but there are also some dif-754

ferences, for instance a distinct central alpine region for minimum temperature755

in winter (not shown).756

Fig. 15 shows the ARI for minimum and maximum temperatures, which is757

used as performance measure to judge the ability of the downscaling methods758

to capture the observed regions of similar temperature variations. It can be759

seen that the single-site WG based methods (GOMEZ-BASIC, GOMEZ-TAD,760

MARFI-BASIC, MARFI-TAD, MARFI-M3, SS-WG) are not able to reproduce761

the regions at all due to the generation of synthetic time series at one specific762

location without considering spatial relationships. WG methods that include at-763

mospheric covariates (WT-WG, SWG) perform somewhat better by indirectly764

incorporating spatial information carried by the covariates. There is no system-765

atic difference between MOS and PP methods. The ARI mostly lies between766

about 0.3 and 0.9 and varies more between seasons than between methods. The767

best performance is achieved for spring to autumn, whereas in winter the lowest768

ARI values are systematically attained. The lower performance in winter might769

partly be explained by region-specific phenomena (for instance inversion), which770
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Figure 14: Regions derived from rotated PCA of seasonally detrended monthly maxi-
mum temperatures in the period 1978-2008, considering the 86 stations of the VALUE-
ECA-86-v2 observational dataset.
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Figure 15: Adjusted Rand Index (ARI) for minimum (top) and maximum (bottom)
temperatures obtained from the European experiments (exp1a and exp1a-RCM). ARI
measures the agreement between the regionalisations for the observations (VALUE-
ECA-86-v2 stations) and the downscaling output, ranging from 0 (no agreement) to
1 (perfect agreement). The methods without results are those having some missing
values in the covariance matrix, as indicated in Section 2.2.2.

are not adequately captured by the downscaling methods. The ARI for ana-771

log methods, which by construction lead to a realistic spatial structure of the772

daily fields, is not higher than for many other methods. The monthly means to773

which the rotated PCA is applied, might be somewhat different from the true774

monthly means, and the questions arises to what extent the results of the ro-775

tated PCA describe robust statistical properties, and to what extent they might776

be influenced by the individual realisations. The ARI for precipitation is shown777

in Fig. 16 and lies between about 0.2 and 0.6, but with no seasonal structure to778

it. Like for temperature, WGs are not able to map the regions and no superior779

performance of multi-site methods arises (not shown).780
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Figure 16: Same as Fig. 15, but for precipitation.
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4 Summary and conclusions781

We have evaluated the spatial variability of the output from over 40 downscaling782

methods for the period 1979-2008 at a European-wide network of 86 stations,783

and at a high-resolution network of 53 stations in Germany. Predictors for the784

PP methods and boundary conditions for the RACMO regional model have785

been taken from the ERA-Interim reanalysis. MOS methods have been ap-786

plied to the reanalysis as well as to the RACMO output. We have analysed787

the dependency of correlations of daily temperature and precipitation series at788

station pairs on the distance between the stations. For the European dataset789

we have also investigated the complexity of the downscaled data by calculating790

the number of independent spatial degrees of freedom. For daily precipitation791

at the German network we have additionally evaluated the dependency of the792

joint exceedance of the wet day threshold and of the local 90th percentile on793

the distance between the stations. Finally we have investigated regional pat-794

terns of European monthly precipitation and temperature obtained from rotated795

principal component analysis.796

The results for correlation lengths and degrees of freedom based on the Eu-797

ropean network are summarised in Fig. 17. Findings related to joint threshold798

exceedances are not included in the figure because they are based on the German799

predictand data and a different set of methods. Results from the regionalisa-800

tion are not included because they are derived from monthly rather than daily801

data. The figure shows the relative bias calculated as the ratio of the bias and802

the observed value for the correlation lengths or the degrees of freedom. This803

normalisation makes it easier to compare the values for differen seasons, and804

for correlation lengths and degrees of freedom. For the bias in the degrees of805

freedom we have swapped the sign because a bias in correlation lengths is usu-806

ally associated with a bias of the opposite sign in the degrees of freedom. The807

summary figure and the detailed results presented earlier show that there is a808

very large spread in how well the different downscaling methods represent the809

characteristics of the observations, ranging from close to reality to very unreal-810

istic.811

For all three predictand variables the raw models have positive biases in812

correlation length and negative biases in the number of degrees of freedom. The813

biases for the RACMO model are smaller than those for the reanalysis, which814

demonstrates the benefit of the explicit representation of smaller spatial scales.815

It is likely that these biases are not fully due to model deficiencies because the816

spatial scales of the data are different. Observations averaged over the gridcells817

can have higher correlations between two locations than local values, and the818

number of degrees of freedom of spatial averages can be lower. Likewise the819

dependence of the exceedance of thresholds at different locations, for which the820

models showed a positive bias, might be higher for area means than for local821

values. Nevertheless the biases represent actual errors if the gridcell values are822

used as direct estimates for local values.823

As can be seen in Fig. 17 most MOS methods substantially reduce the pos-824

itive biases in correlation length for precipitation, whereas there is no clear825

improvement for temperature. This difference might be due to the fact that826

precipitation is an intermittent process with many zero values, for which cor-827

recting the simulated marginal distribution affects correlations and threshold828

exeedances more strongly than for the continuous temperature timeseries. The829
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Figure 17: Relative biases in correlation length and independent spatial degrees of
freedom (with sign swapped) based on the European network for daily maximum and
minimum temperature, and precipitation. The columns indicate the seasons (annual,
DJF, MAM, JJA, SON). For the degrees of freedom no annual values have been
calculated.
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bias in the degrees of freedom is not reduced as much. It was also shown that830

MOS methods reduce the positive bias in the dependence for wet threshold831

exceedance, but not for the exceedance of the 90th percentile of local daily pre-832

cipitation. High-resolution, convection-permitting RCMs combined with MOS833

might represent the spatial characteristics of heavy precipitation events consid-834

erably better, but are still not widely used in climate change studies because835

they are computationally expensive (Prein et al., 2015). The value added by the836

regional model is still present after the MOS postprocessing (methods with suffix837

’-R’ perform better than those with suffix ’-E’). For temperature the seasonal-838

ity of the biases is similar for the raw model and for the MOS-corrected values.839

The biases in correlation length and in the degrees of freedom are for minimum840

temperature in general slightly higher than those for maximum temperature.841

Fig. 17 and the specific findings in the main section also show that for all842

predictand variables MOS methods perform in general better than PP methods,843

however with some noteworthy exceptions. Deterministic PP methods that are844

based on multiple linear regression and large-scale predictors tend to strongly845

overestimate spatial correlations and also dependences of threshold exceedances,846

while some other PP methods, for instance MO-GP and GLM-P, which use847

local predictors, underestimate the joint variability between the stations, in848

particular for precipitation. Given the different predictors used for different PP849

methods it is possible that the results are strongly influenced by the predictor850

choice rather than by the structure of the statistical model. Analog methods851

yield, as expected, realistic spatial characteristics apart from sampling effects if852

a common analog date is selected for all locations, whereas they underestimate853

links between the stations if analogs are defined locally. In addition to the854

analog methods the GLM-BN-DET method, which explicitly models spatial855

dependence, performes very well with respect to the joint exceedance of the856

local 90th percentile of daily precipitation, but somewhat underestimates the857

joint exceedance of the wet-day threshold and of correlation lengths. Within the858

set of PP methods analysed in our study multisite analog methods are thus the859

only ones that are clearly suitable in applications where a realistic representation860

of spatial variability is important. In climate change applications it needs to be861

carefully checked however whether their use is justified, as potential changes of862

the character of the analogs with respect to the predictor variable, and potential863

new weather situation that are not well represented by the analogs may make864

it difficult to capture the climate change signal. Furthermore, the temporal865

sequence of the downscaled series might be unrealistic (Maraun et al., 2018).866

The stochastic PP and MOS methods considered in the study yield time-867

series that are too independent between the stations. There are two potential868

contributions to this. First, the local variability that is explained by large-scale869

predictors, and thus leads to links between locations, could be underestimated870

due to the choice of statistical model and predictors. Second, the local noise is871

independently added at different locations, and thus cannot include potential872

links in the unexplained variability. The unconditional, local weather genera-873

tors, which generate timeseries that are completely uncorrelated between the874

locations, trivially fail to generate realistic spatial fields. Recently multisite875

weather generators have been developed, and it has been demonstrated that876

they can capture the spatial characteristics of precipitation at the catchment877

scale well (e.g. Keller et al., 2015). If parameter changes in a future climate can878

be credibly estimated, for instance by conditioning them on predictor variables,879
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such multisite weather generators can in principle be applied for climate change880

studies.881

As can be seen in Fig. 17 in most cases positive (negative) biases in the882

correlation length are associated with negative (positive) biases in the degrees883

of freedom, and the ranking of the magnitudes is similar. This might be ex-884

pected as both measures are based on correlations and capture aspects of the885

spatial complexity of the fields, with low (high) complexity likely to be associ-886

ated with large (small) correlation lengths and a low (high) number of degrees887

of freedom. However, there are some exceptions. For temperature the only888

method for which the association is not found is CDFt-E, which as discussed889

earlier might be due to technical problems with the method. The other excep-890

tion are some of the MOS methods for precipitation, which have small negative891

biases for the correlation lengths (see also Fig. 6) but also negative biases for892

the degrees of freedom. This shows that although both measures usually yield893

essentially the same information, subtleties in the correlation structure can exist894

that lead to both biases having the same sign. This situation can occur because895

the correlation lengths are dominated by station pairs with distances that lead896

to correlations near the correlation threshold, whereas the degrees of freedom897

are based on the entire correlation matrix. Although both approaches require898

the calculation of the correlation matrix, calculating the degrees of freedom is899

more straightforward because only the eigenvalue spectrum is required, whereas900

determining the correlation lengths requires the calculation of correlations as901

a function of distance, fitting of a smooth function, and involves a subjective902

correlation threshold.903

In summary we found that most PP downscaling methods yield unrealistic904

spatial characteristics, regardless of whether large-scale or local predictors were905

used, and therefore should not be applied for multisite downscaling if the spatial906

characteristics of the results are relevant. The exception are multisite analog907

methods and a method that explicitly models spatial dependence, which per-908

formed well. The raw RCM clearly improves the skill compared to the driving909

reanalysis. Adjusting the marginal distributions through MOS further reduces910

biases in correlation lengths for precipitation and joint occurrence of wet days,911

but does neither reduce the underestimation of complexity as measured by de-912

grees of freedom, nor the substantial overestimation of the joint occurrence of913

heavy precipitation events, while the improvements through the RCM are in914

most cases retained. Whether the spatial characteristics of the output of these915

methods is realistic enough for a given application needs to be carefully con-916

sidered in each individual case. Moreover, a good performance in a perfect917

predictor setup is no guarantee that the methods will perform well when driven918

with GCM simulations for the present climate or that the climate change signal919

is realistically represented (e.g. Maraun et al., 2017).920

Despite the satisfying skill of some statistical downscaling methods, our re-921

sults show that providing downscaled meteorological fields with realistic spatial922

characteristics remains a challenge. In principle the common influence of predic-923

tors in singlesite PP methods could lead to realistic spatial patterns, but in the924

methods considered here it does not. The better skill of the RCM and of MOS925

methods compared to most PP methods shows that explicit physical modelling926

with local statistical post-processing is in general a better approach for obtaining927

realistic spatial fields than deriving full spatial fields from large-scale predictors928

(with the exceptions mentioned above). However none of the methods consid-929
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ered is able to produce output with a highly realistic spatial structure, including930

the dependences for the exceedance of high precipitation thresholds. There is931

thus still a clear need for increasing the resolution of RCMs used in climate932

change studies, because the explicit physical modelling of small-scale processes933

can be expected to improve the spatial characteristics of the raw model output934

and of MOS-corrected fields, as well as lead to more realistic climate change935

signals if regional processes affect climate change. Multisite weather generators936

and multisite MOS have also the potential to yield realistic spatial fields, but937

depend either on the assumption that the spatial dependence does not change938

over time, or on ways to estimate and include changes in the dependence.939

We note that the observation network used in VALUE is designed for val-940

idation of a wide range of aspects of downscaling results, and not specifically941

selected for the analysis of spatial variability. In particular the European net-942

work, but also the German one, have station densities that do not well resolve943

variability within small hydrological catchments. Thus similar studies with a944

very high station density would be desirable. On very small scales subgrid vari-945

ability becomes relevant for MOS methods and our results might not be directly946

transferable because deterministic MOS approaches can be expected to lead to947

too high dependences in cases where there is substantial subgrid variability948

(Maraun, 2013).949

As our intercomparison is based on an ensemble of opportunity of down-950

scaling methods it would also be very useful to conduct future comparisons of951

spatial aspects with a set of downscaling methods that does include all meth-952

ods that are designed to represent spatial variability well. This should include953

for instance the multisite weather generators and multisite MOS methods men-954

tioned in the introduction. The evaluation of the former in different studies has955

been inconclusive, while it has been positive for the latter, and a systematic956

comparison using a common experimental setup would be very helpful for iden-957

tifying suitable methods and for informing further method development. The958

methods that explicitly model spatial dependence are more complex, more dif-959

ficult to calibrate and apply, and more computationally expensive than most of960

the methods used in our study, which is one of the main reasons they are not961

frequently used and thus not included. The complexity of these methods also962

means that they are not necessarly much easier to implement and apply than963

high-resolution RCMs. Which combination of dynamical and statistical models964

is best suited for a given application therefore needs careful consideration.965
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Boé, J., Terray, L., Habets, F. and Martin, E. (2006), ‘A simple statistical-983

dynamical downscaling scheme based on weather types and conditional re-984

sampling’, J. Geophys. Res.-Atmos. 111(D23).985

Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M. and Blade, I.986

(1999), ‘The effective number of spatial degrees of freedom of a time-varying987

field’, J. Clim. 12(7), 1990–2009.988

Cannon, A. J. (2008), ‘Probabilistic multisite precipitation downscaling by an989

expanded Bernoulli-Gamma density network’, J. Hydrometeorol. 9(6), 1284–990

1300.991

Cannon, A. J. (2018), ‘Multivariate quantile mapping bias correction: an N-992

dimensional probability density function transform for climate model simula-993

tions of multiple variables’, Clim. Dynam. 50(1-2), 31–49.994

Cano, R., Sordo, C. and Gutiérrez, J. M. (2004), Applications of Bayesian995
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