2,036 research outputs found
Isotopic Production Cross Sections in Proton-Nucleus Collisions at 200 MeV
Intermediate mass fragments (IMF) from the interaction of Al,
Co and Au with 200 MeV protons were measured in an angular range
from 20 degree to 120 degree in the laboratory system. The fragments, ranging
from isotopes of helium up to isotopes of carbon, were isotopically resolved.
Double differential cross sections, energy differential cross sections and
total cross sections were extracted.Comment: accepted by Phys. Rev.
Federated Learning Based Proactive Content Caching in Edge Computing
This is the author accepted manuscript. the final version is available from IEEE via the DOI in this recordContent caching is a promising approach in edge computing to cope with the explosive growth of mobile data on 5G networks, where contents are typically placed on local caches for fast and repetitive data access. Due to the capacity limit of caches, it is essential to predict the popularity of files and cache those popular ones. However, the fluctuated popularity of files makes the prediction a highly challenging task. To tackle this challenge, many recent works propose learning based approaches which gather the users' data centrally for training, but they bring a significant issue: users may not trust the central server and thus hesitate to upload their private data. In order to address this issue, we propose a Federated learning based Proactive Content Caching (FPCC) scheme, which does not require to gather users' data centrally for training. The FPCC is based on a hierarchical architecture in which the server aggregates the users' updates using federated averaging, and each user performs training on its local data using hybrid filtering on stacked autoencoders. The experimental results demonstrate that, without gathering user's private data, our scheme still outperforms other learning-based caching algorithms such as m-epsilon-greedy and Thompson sampling in terms of cache efficiency.Engineering and Physical Sciences Research Council (EPSRC)National Key Research and Development Program of ChinaNational Natural Science Foundation of ChinaEuropean Union Seventh Framework Programm
Studies of the Giant Dipole Resonance in Al, Ca, Fe, Ni and Pb with high energy-resolution inelastic proton scattering under 0
A survey of the fine structure of the Isovector Giant Dipole Resonance
(IVGDR) was performed, using the recently commissioned zero-degree facility of
the K600 magnetic spectrometer at iThemba LABS. Inelastic proton scattering at
an incident energy of 200 MeV was measured on Al, Ca, Fe,
Ni and Pb. A high energy resolution (
40 keV FWHM) could be achieved after utilising faint-beam and
dispersion-matching techniques. Considerable fine structure is observed in the
energy region of the IVGDR and characteristic energy scales are extracted from
the experimental data by means of a wavelet analysis. The comparison with
Quasiparticle-Phonon Model (QPM) calculations provides insight into the
relevance of different giant resonance decay mechanisms. Photoabsorption cross
sections derived from the data assuming dominance of relativistic Coulomb
excitation are in fair agreement with previous work using real photons.Comment: 15 pages, 15 figure
Wavelet signatures of -splitting of the Isoscalar Giant Quadrupole Resonance in deformed nuclei from high-resolution (p,p) scattering off Nd
The phenomenon of fine structure of the Isoscalar Giant Quadrupole Resonance
(ISGQR) has been studied with high energy-resolution proton inelastic
scattering at iThemba LABS in the chain of stable even-mass Nd isotopes
covering the transition from spherical to deformed ground states. A wavelet
analysis of the background-subtracted spectra in the deformed 146,148,150Nd
isotopes reveals characteristic scales in correspondence with scales obtained
from a Skyrme RPA calculation using the SVmas10 parameterization. A semblance
analysis shows that these scales arise from the energy shift between the main
fragments of the K = 0, 1 and K = 2 components.Comment: 7 pages, 6 figure
Fine structure of the isoscalar giant quadrupole resonance in 40Ca due to Landau damping?
The fragmentation of the Isoscalar Giant Quadrupole Resonance (ISGQR) in 40Ca
has been investigated in high energy-resolution experiments using proton
inelastic scattering at E_p = 200 MeV. Fine structure is observed in the region
of the ISGQR and its characteristic energy scales are extracted from the
experimental data by means of a wavelet analysis. The experimental scales are
well described by Random Phase Approximation (RPA) and second-RPA calculations
with an effective interaction derived from a realistic nucleon-nucleon
interaction by the Unitary Correlation Operator Method (UCOM). In these results
characteristic scales are already present at the mean-field level pointing to
their origination in Landau damping, in contrast to the findings in heavier
nuclei and also to SRPA calculations for 40Ca based on phenomenological
effective interactions, where fine structure is explained by the coupling to
two-particle two-hole (2p-2h) states.Comment: Phys. Lett. B, in pres
Isoscalar giant monopole strength in Ni, Zr, Sn and Pb
Inelastic -particle scattering at energies of a few hundred MeV and
very-forward scattering angles including has been established as a
tool for the study of the isoscalar giant monopole (IS0) strength distributions
in nuclei. An independent investigation of the IS0 strength in nuclei across a
wide mass range was performed using the facility at iThemba
Laboratory for Accelerator Based Sciences (iThemba LABS), South Africa, to
understand differences observed between IS0 strength distributions in previous
experiments performed at the Texas A\&M University (TAMU) Cyclotron Institute,
USA and the Research Center for Nuclear Physics (RCNP), Japan. The isoscalar
giant monopole resonance (ISGMR) was excited in Ni, Zr,
Sn and Pb using -particle inelastic scattering with
MeV beam and scattering angles
and . The K magnetic spectrometer at iThemba LABS was used to
detect and momentum analyze the inelastically scattered particles. The
IS0 strength distributions in the nuclei studied were deduced with the
difference-of-spectra (DoS) technique including a correction factor for the
data based on the decomposition of cross sections in previous
experiments. IS0 strength distributions for Ni, Zr, Sn
and Pb are extracted in the excitation-energy region MeV.Using correction factors extracted from the RCNP experiments, there is
a fair agreement with their published IS0 results. Good agreement for IS0
strength in Ni is also obtained with correction factors deduced from the
TAMU results, while marked differences are found for Zr and Pb.Comment: 12 pages, 10 figures, regular article submitted to PR
Parenteral anticoagulation may prolong the survival of patients with limited small cell lung cancer: a Cochrane systematic review
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Fine structure of the isoscalar giant monopole resonance in Ni, Zr, Sn and Pb
Over the past two decades high energy-resolution inelastic proton scattering
studies were used to gain an understanding of the origin of fine structure
observed in the isoscalar giant quadrupole resonance (ISGQR) and the isovector
giant dipole resonance (IVGDR). Recently, the isoscalar giant monopole
resonance (ISGMR) in Ni, Zr, Sn and Pb was
studied at the iThemba Laboratory for Accelerator Based Sciences (iThemba LABS)
by means of inelastic -particle scattering at very forward scattering
angles (including ). The good energy resolution of the measurement
revealed significant fine structure of the ISGMR.~To extract scales by means of
wavelet analysis characterizing the observed fine structure of the ISGMR in
order to investigate the role of different mechanisms contributing to its decay
width. Characteristic energy scales are extracted from the fine structure using
continuous wavelet transforms. The experimental energy scales are compared to
different theoretical approaches performed in the framework of quasiparticle
random phase approximation (QRPA) and beyond-QRPA including complex
configurations using both non-relativistic and relativistic density functional
theory. All models highlight the role of Landau fragmentation for the damping
of the ISGMR especially in the medium-mass region. Models which include the
coupling between one particle-one hole (1p-1h) and two particle-two hole
(2p-2h) configurations modify the strength distributions and wavelet scales
indicating the importance of the spreading width. The effect becomes more
pronounced with increasing mass number. Wavelet scales remain a sensitive
measure of the interplay between Landau fragmentation and the spreading width
in the description of the fine structure of giant resonances.Comment: 13 pages,7 figures, regular articl
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector
A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13 TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
- …