398 research outputs found

    Unscreened Hartree-Fock calculations for metallic Fe, Co, Ni, and Cu from ab-initio Hamiltonians

    Full text link
    Unscreened Hartree-Fock approximation (HFA) calculations for metallic Fe, Co, Ni, and Cu are presented, by using a quantum-chemical approach. We believe that these are the first HFA results to have been done for crystalline 3d transition metals. Our approach uses a linearized muffin-tin orbital calculation to determine Bloch functions for the Hartree one-particle Hamiltonian, and from these obtains maximally localized Wannier functions, using a method proposed by Marzari and Vanderbilt. Within this Wannier basis all relevant one-particle and two-particle Coulomb matrix elements are calculated. The resulting second-quantized multi-band Hamiltonian with ab-initio parameters is studied within the simplest many-body approximation, namely the unscreened, self-consistent HFA, which takes into account exact exchange and is free of self-interactions. Although the d-bands sit considerably lower within HFA than within the local (spin) density approximation L(S)DA, the exchange splitting and magnetic moments for ferromagnetic Fe, Co, and Ni are only slightly larger in HFA than what is obtained either experimentally or within LSDA. The HFA total energies are lower than the corresponding LSDA calculations. We believe that this same approach can be easily extended to include more sophisticated ab-initio many-body treatments of the electronic structure of solids.Comment: 11 papes, 7 figures, 5 table

    ESTIMATING GENOME-WIDE COPY NUMBER USING ALLELE SPECIFIC MIXTURE MODELS

    Get PDF
    Genomic changes such as copy number alterations are thought to be one of the major underlying causes of human phenotypic variation among normal and disease subjects [23,11,25,26,5,4,7,18]. These include chromosomal regions with so-called copy number alterations: instead of the expected two copies, a section of the chromosome for a particular individual may have zero copies (homozygous deletion), one copy (hemizygous deletions), or more than two copies (amplifications). The canonical example is Down syndrome which is caused by an extra copy of chromosome 21. Identification of such abnormalities in smaller regions has been of great interest, because it is believed to be an underlying cause of cancer. More than one decade ago comparative genomic hybridization (CGH)technology was developed to detect copy number changes in a high-throughput fashion. However, this technology only provides a 10 MB resolution which limits the ability to detect copy number alterations spanning small regions. It is widely believed that a copy number alteration as small as one base can have significant downstream effects, thus microarray manufacturers have developed technologies that provide much higher resolution. Unfortunately, strong probe effects and variation introduced by sample preparation procedures have made single-point copy number estimates too imprecise to be useful. CGH arrays use a two-color hybridization, usually comparing a sample of interest to a reference sample, which to some degree removes the probe effect. However, the resolution is not nearly high enough to provide single-point copy number estimates. Various groups have proposed statistical procedures that pool data from neighboring locations to successfully improve precision. However, these procedure need to average across relatively large regions to work effectively thus greatly reducing the resolution. Recently, regression-type models that account for probe-effect have been proposed and appear to improve accuracy as well as precision. In this paper, we propose a mixture model solution specifically designed for single-point estimation, that provides various advantages over the existing methodology. We use a 314 sample database, constructed with public datasets, to motivate and fit models for the conditional distribution of the observed intensities given allele specific copy numbers. With the estimated models in place we can compute posterior probabilities that provide a useful prediction rule as well as a confidence measure for each call. Software to implement this procedure will be available in the Bioconductor oligo packagehttp://www.bioconductor.org)

    Revealing Nanoscale Chemical Heterogeneities in Polycrystalline Mo-BiVO4 Thin Films

    Get PDF
    Indexación: Scopus.The activity of polycrystalline thin film photoelectrodes is impacted by local variations of the material properties due to the exposure of different crystal facets and the presence of grain/domain boundaries. Here a multi-modal approach is applied to correlate nanoscale heterogeneities in chemical composition and electronic structure with nanoscale morphology in polycrystalline Mo-BiVO4. By using scanning transmission X-ray microscopy, the characteristic structure of polycrystalline film is used to disentangle the different X-ray absorption spectra corresponding to grain centers and grain boundaries. Comparing both spectra reveals phase segregation of V2O5 at grain boundaries of Mo-BiVO4 thin films, which is further supported by X-ray photoelectron spectroscopy and many-body density functional theory calculations. Theoretical calculations also enable to predict the X-ray absorption spectral fingerprint of polarons in Mo-BiVO4. After photo-electrochemical operation, the degraded Mo-BiVO4 films show similar grain center and grain boundary spectra indicating V2O5 dissolution in the course of the reaction. Overall, these findings provide valuable insights into the degradation mechanism and the impact of material heterogeneities on the material performance and stability of polycrystalline photoelectrodes. © 2020 The Authors. Published by Wiley-VCH GmbHhttps://onlinelibrary-wiley-com.recursosbiblioteca.unab.cl/doi/10.1002/smll.20200160

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters
    corecore