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Abstract. Genomic changes such as copy number alterations are thought
to be one of the major underlying causes of human phenotypic varia-
tion among normal and disease subjects [23, 11, 25,26, 5, 4,7, 18]. These
include chromosomal regions with so-called copy number alterations: in-
stead of the expected two copies, a section of the chromosome for a
particular individual may have zero copies (homozygous deletion), one
copy (hemizygous deletions), or more than two copies (amplifications).
The canonical example is Down syndrome which is caused by an extra
copy of chromosome 21. Identification of such abnormalities in smaller
regions has been of great interest, because it is believed to be an under-
lying cause of cancer.

More than one decade ago comparative genomic hybridization (CGH)
technology was developed to detect copy number changes in a high-
throughput fashion. However, this technology only provides a 10 MB res-
olution which limits the ability to detect copy number alterations span-
ning small regions. It is widely believed that a copy number alteration as
small as one base can have significant downstream effects, thus microar-
ray manufacturers have developed technologies that provide much higher
resolution. Unfortunately, strong probe effects and variation introduced
by sample preparation procedures have made single-point copy number
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estimates too imprecise to be useful. CGH arrays use a two-color hy-
bridization, usually comparing a sample of interest to a reference sample,
which to some degree removes the probe effect. However, the resolution
is not nearly high enough to provide single-point copy number estimates.
Various groups have proposed statistical procedures that pool data from
neighboring locations to successfully improve precision. However, these
procedure need to average across relatively large regions to work ef-
fectively thus greatly reducing the resolution. Recently, regression-type
models that account for probe-effect have been proposed and appear
to improve accuracy as well as precision. In this paper, we propose a
mixture model solution specifically designed for single-point estimation,
that provides various advantages over the existing methodology. We use
a 314 sample database, constructed with public datasets, to motivate
and fit models for the conditional distribution of the observed intensities
given allele specific copy numbers. With the estimated models in place
we can compute posterior probabilities that provide a useful prediction
rule as well as a confidence measure for each call. Software to imple-
ment this procedure will be available in the Bioconductor oligo package
(http://www.bioconductor.org).

1 Introduction

The demand for technologies that provide high-resolution measurements for copy
number estimates has driven microarray manufacturers such as Ilumina and
Nimblegen to develop CGH-SNP microarrays [20,6,24]. Although Affymetrix
has not yet developed a product specific for copy number analysis, various
groups, including Affymetrix, have described statistical methodology that make
use of their SNP chips, originally developed for genotyping [28,1,9,19,13,15,8,
16], to provide successful copy number estimation algorithms. An advantage of
the SNP chip technology is that, given the popularity of the genotyping applica-
tion, the protocols used to prepare the genomic DNA samples is well developed
and tested. Another advantage is that we can obtain genotype calls which per-
mits allele specific copy number estimation which in turn can be used to predict
parent specific copy number [16].

The genotyping platform provided by Affymetrix interrogates hundreds of
thousands of human single nucleotide polymorphisms (SNPs) on a microarray.
DNA is obtained and fragmented at known locations so that the SNPs are far
from the ends of these fragments, the fragmented DNA is amplified with a poly-
merase chain reaction (PCR), and the sample is labeled and hybridized to an
array containing probes designed to interrogate the resulting fragments. We re-
fer to the measurements obtained from these probes as the feature intensities.
There are currently three products available from Affymetrix: an array cover-
ing approximately 10,000 SNPs (GeneChip Human Mapping 10K), a pair of
arrays covering approximately 100,000 SNPs (GeneChip Human Mapping 50K
Xba and Hind Array), and a pair of arrays covering approximately 500,000 SNPs
(GeneChip Human Mapping 250K Nsp Array and Sty Array). These are referred
to as the 10K, 100K, and 500K chips respectively.
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Fig. 1. Log (base 2) intensity, S;; plotted against chromosomal position of SNP 3.
Chromosomes 20, 21, 22, and X are shown for male with Down syndrome. Notice that
we expect values from chromosome 21 and X to be higher (3 copies) and lower (1 copy)
respectively.

To motivate the model and estimation procedures described here we need to
understand the basics of the feature-level data. We provide the essential details
here and refer readers to Kennedy et al. [14] for a complete description. Each SNP
on the array is represented by a collection of probe quartets. As with Affymetrix
expression arrays, the probes are defined by 25-mer oligonucleotide molecules
referred to as perfect match (PM) probes”. A difference with expression arrays is
that PM probes differ in three important ways. First, two alleles are interrogated
(for most SNPs only two alleles are observed in nature). These are denoted by A
and B and divide the probes into two groups of equal size. For each PM probe
representing the A allele there is an allele B that differs by just one base pair (the
SNP). Second, features are included to represent the sense and antisense strands.
This difference divides the probes into two groups that are not necessarily of the
same size. Finally, for each allele/strand combination, various features are added
by shifting the position of the SNP within the probe. The position shift ranges
only from -4 to 4 bases, therefore within each strands the probes are relatively
similar.

Most copy number algorithms can be divided into three main steps which
we refer to as 1) the preprocessing step, 2) the copy number estimation step,
and 3) the smoothing across the chromosome step. In the preprocessing step we
summarize feature intensities into two quantities, representative of allele A and
B. We refer to this step as preprocessing. In this paper, we use the following
notation to denote the preprocessed data: 84;; and fp;; are the logarithms
(base 2) of quantities proportional to the amount of DNA in target sample j
associated with alleles A and B for SNP 4. In the estimation step, we use these s

" There are also mismatch probes MM which we completely ignore because the man-
ufacture has plans of no longer using them.
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Fig. 2. CARAT regression prediction on a SNP from Chromosome X. The dashed grey
lines indicate allele specific copy number = 0,1,2 (from low to high). Figure A) and B)
shows the allele specific prediction of copy number (log base 2) as compared to the real
copy number (log base 2). We can see that even though the middle of each boxplot
lies closely to the intersection of the dashed lines and the diagonal line, the ranges of
boxplots overlap. Figure C) shows a scatterplot of preprocessed log intensities for allele
A and B.

to estimate the true copy number, which we denote with C; ;. The allele specific
copy number are denoted with C,;; and Cp ;;. Notice that the total copy
number is the sum of the allele specific copy numbers, i.e. C; j = Ca;; + CB,i ;-
As we demonstrate here (see Figure 1), estimates of 84 and 0p are, in general,
not precise enough to provide useful copy number calls. Therefore, most copy
number estimation algorithms include the smoothing step in which copy number
estimates from neighboring regions are averaged to improve the signal to noise
ratio. These techniques range from the simple methods such as running median
to more complicated ones such as hidden Markov models (HMM). In Section
3 we review some of the existing methods and motivate our mixture model
approach. In Section 4 we describe the mixture model approach. In Sections 5 we
present results and discussion respectively. Throughout this extended abstract
we use data obtained from collaborators and public repositories which we briefly
describe in Section 2.

2 Control Data

In Section 4 we describe a model that is trained using a reference set of 314 nor-
mal samples hybridized to Affymetrix’s 100K array. We screened out samples
not achieving the quality standard described by Carvalho et al [2]. Our reference
set consists of 86 Hapmap samples, 124 samples from the Coriell Repositories
(42 African American, 20 Asians, 40 Caucasians and 22 samples from the poly-
morphisms discovery panel) [3], and 104 from Chakravarti’s lab. The test data
was sampled from 20 Trisomy samples from Pevsner’s lab.
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3 Previous Work and Motivation

The first algorithms we describe do not provide allele specific results. We there-
fore define the total copy number quantity S; ; = log,(294-i4 + 292.i.3). Ideally
the S;; are proportional to the true log-scale copy number. Figure 1A shows
data for a male with Down syndrome. The S; ; are highly noisy and differences
between chromosome 21 and X are hard to detect unless we smooth along the
chromosome (in Figure 1 we show the results of running median). The lessons
learned from expression arrays help understand this problem. Various authors
have proposed an additive background/multiplicative model for gene expression
microarray [22,10,27]. Furthermore, for Affymetrix arrays, various authors [12,
17] have clearly shown the existence of a strong multiplicative probe-specific ef-
fect. Probe-specific background noise, attributed to non-specific binding, have
also been described [27]. Others [21, 16, 2] demonstrate that similar sized effects
are seen with SNP chips. These effects are strong enough to be clearly seen
even after averaging the various feature intensities associated with each SNP.
Extending these findings to the copy number case results in the following model:

Oa,i,j =108 (Ba,i + Pa,iCaayi,j) (1)

with a = A, B denoting allele, i identifies the SNP, j identifies the sample,
represents a positive valued SNP-specific background level, ¢ represents a SNP-
specific probe-effect, and € is multiplicative measurement error. Assuming this
model holds, relatively simple calculations demonstrate that large values of 3, ;
result in attenuation of real differences and that large variability of ¢, ; across
SNPs explains the large variance seen in Figure 1A.

Affymetrix’s Copy Number Analysis Tool (CNAT) [1, 9] deals with the probe-
effect using a simple yet effective technique. CNAT does not provide allele specific
results and concentrates on estimating the overall copy number. For the prepro-
cessing step, all feature intensities related to the SNP are therefore averaged to
form S; ;. Using dozens of control subjects CNAT defines a SNP specific aver-
age S;,, standard deviation &;4, for each genotype g=AA,AB,BB. Values S; ;,
from any new sample j' that are called genotype g are standardized in the usual
manner: (S; j —Sig)/0iq. A predefined regression equation is then used to trans-
form these standardized values to the copy number scale. The standardized S
values are used to obtain p-values from the null hypothesis the S = 0 (C = 2).
Figure 1B shows de-meaned values for the same data shown in Figure 1A. The
improvement is clear and it is due to the fact that ¢ is partially removed from
the de-mean-ed values. However, notice that the signal to noise ratio still ap-
pears to be large: the separation between chromosomes with known differences
is far from perfect. To avoid false positives, the third step in CNAT involves
looking for strings of consecutive p-values that are smaller than some predefined
cut-off. Other smoothing approaches have been used. For example, Zhao et al.
[28] proposes the use Hidden Markov models (HMM) to define the procedure
implemented by dChip.

Other authors have noted that further improvements can be obtained by re-
ducing the variance at the preprocessing step. For example, several groups [19,
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Fig. 3. Conditional joint distributions of [0;;|C;,; = c] for a SNP on chromosome X
and a SNP on chromosome 21. The X-axis is the log base 2 intensity for allele B. The
Y-axis is the log base 2 intensity for allele A. The red dots are from 45 new samples
of male normal and 20 Down syndrome patients, respectively. The ellipses shows the
95% critical region around the centers. The brown ellipses represent C = 3, C;,; =
(0,3),(1,2),(2,1),(3,0). The orange ellipses represent C' = 2, C; ; = (0, 2), (1,1), (2,0).
The tan ellipses represent C = 1, C;; = (0,1),(1,0). The yellow ellipses represent

C=0,¢C;; =(00).
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13,15] have used probe-sequence information, mainly GC content, and fragment
length to predict and remove some of the probe-effect related variability. How-
ever, even after accounting for such factors the signal to noise ratio remains too
low to make single-point cop number calls, thus these authors propose their own
versions of the smoothing step.

Huang et al. [8] noted that CNAT’s mean removal approach does not fully
remove the probe effect because it does not properly deal with the additive back-
ground effect 8. They propose the Copy Number Analysis with Regression And
Tree (CARAT) algorithm which uses a non-linear regression model, based on
model (1), to account for the probe-specific effects. To estimate model parameters
they use a control dataset composed of dozens of arrays. First, genotype calls are
obtained and treated as known. This permits estimation of allele specific param-
eter estimates. For example, for allele A we have known values of ¢4 = 0,¢cg = 2
(BB genotype), c4 = 1,cg = 1 (AB genotype), and (cq4 = 2,¢g = 0 (AA geno-
type) and thus we can estimate S, ; and ¢, ; with, for example, least squares, for
each SNP i and each allele a = A, B. For a new sample, we can predict c4,cp
using the fitted parameters and equation (1). Calls can then be based on cut-offs
for the prediction of é4 + ég. Huang et al. [8] suggest using [0, 1.5), [1.5,2.5],
(2.5,00) for total copy number < 2,= 2,> 2 respectively. Figure 2A shows the
data used in the regression for allele A from a randomly chosen SNP. The figure
demonstrates that the model works reasonably well but that the signal to noise
ratio is not large enough to provide perfect accuracy (the boxplots overlap).
CARAT utilized a regression tree approach in the smoothing step.

The Probe-level allele-specific quantitation (PLASQ) [16] procedure is similar
to CARAT. Two major difference is that PLASQ fits model (1) to the feature-
level data and that PLASQ does not rely on external genotype calls. Although,
in our opinion, PLASQ provides a superior model-based framework than any
other approach, it is computationally challenging to implement. This is because
a non-linear estimation procedure is performed at the feature-level for every
SNP. Furthermore, it is difficult to adapt it to be robust to outliers and to take
probe-sequence and fragment size into account.

Model based approaches such as CARAT and PLASQ provide a great ad-
vantage over previous ones: reliable confidence intervals can be computed for
single-point copy number estimates. Huang et al. [8] point out that their uncer-
tainty assessment permits one to call a relatively large group of SNPs and keep
the false positive rate relatively low. We now briefly describe a simple adaptation
of these methods that provides further improvements.

Notice that all of the above described algorithms use regression-type ap-
proaches to give a continuous prediction of copy number. The current approaches
rely on three assumptions that we believe are not exactly true. The first is that
the linear relationship predicted by model 1. Figure 2A and 2B show that there
are small but significant deviations from these models. Other SNPs (not shown)
show slightly larger deviations. The second is that 84 and §p are independent.
This assumption is clearly not true as demonstrated by Figures 2C and 3. The
third assumption is that the variance of the measurement error term does not
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depend on allele-specific copy number values. Figure 3 also shows this is not the
case. In general, we are making convenience assumptions regarding the condi-
tional probabilities of (§4,605)" given allele-specific copy number that might be
hurting our bottom-line results.

Theoretically, one can show that the best predictor of discrete classes given
continuous covariates is Bayes classifier. Bayes classifier is a function of the
conditional distribution of the predictors given the classes which we can not
always estimate effectively. In the next section we describe how we can use the
large amount of public data and equation (1) to obtain useful estimates of these
conditional distributions and therefore improved copy number calls.

Another problem with the above mentioned approaches is that they do not
take into account the strong lab/study effects that are seen in SNP chip data [2].
Huang et al. [8] notice this problem and propose an ad-hoc solution that relies
on having genotype calls for many samples from each study. This approach is
clearly not usable in cases where we wish to obtain copy number calls for a small
batch of new samples. Recently, Carvalho et al. [2] proposed a preprocessing
algorithm, SNP-RMA, that remove much of the lab-effect. We use SNP-RMA
preprocessed values throughout this extended abstract. These authors also de-
scribe the CRLMM procedure which we use to obtain genotype calls for the
control dataset.

4 Allele-specific Mixture Model

Figure 2C shows a scatterplot of 8 4 vs. 8 values from hundreds of control arrays
for a particular SNP. The three genotypes are clearly seen. Furthermore each of
the three “clouds” looks bivariate normal with the AB genotype showing signs
of correlation. Most SNPs show very similar plots and motivate the following

model:
[Oi,j|C,~,J- = C] — <’YA,CA,Z.) + <6A,CA,i,j) (2)

YB,cs i €A,cB,i,j

with 8, ; = (04,08)", Cij = (Ca,i,j,CB,i,j)' representing the un-observed true
copy number of alleles A and B for SNP 4 on sample j, ¢ = (ca,cp)’ are the
possible values C; ; can take, (YA,c,,i,VB,cs,i)’ accounts for the shifts in loca-
tion caused by the probe-effect, and (€A,c,,i j,€B,cs,i,j) 1S a bivariate normal
error with mean 0 and copy-number-specific covariance matrix ¥.; which is
defined by the allele-copy-number-specific standard deviations o, ;,0.,,; and
copy-number-pair-specific correlation pc, ¢y ,i-

Remember that the sequence composition of the sense and antisense probes
are quite different. Carvalho et al. [2] point out that, for a few hundred SNPs,
one of the two strands does not appear to be sensitive to genotype changes. This
difference is also observed with probes within the same strand. Huang et al. [8]
used arbitrary cutoffs to select probes with strong allelic dosage response for
further analysis. For this reason, we propose fitting the above model for probe-
level data. Currently, the SNP-RMA preprocessing provides, by default, separate
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values of 4 and 6p for sense and antisense. However, without loss of generality
we describe the procedure as if there was only one probe.

For a large set of control data, described in Section 2, we obtain genotype
calls, act as if these are known. This implies we know C for all these samples
and we can estimate the s by simply using;:

Faeai =Nt D Bauj, ca=0,1,2 (3)
{j: Ca,i,j=ca}

with N, ; the number of samples with genotypes implying C'a,;; = c4. The
covariance matrix X ; s is computed in a similar way, namely using the sample
covariance matrix of @; ; for samples j implying C; ; = c. ® Because we assume
the es are normal, these sets of parameter estimates define the conditional dis-
tributions for C = (2,0),(1,1) and (0, 2). Notice that model (1) is not used to
form any of these conditional distributions. Next we assume that the behavior of
the 0s for C'4 = ¢4 is similar for all values of Cg and vice-versa. We then infer
the conditional means for C = (0,0), (0,1), (1,0). For example the conditional
mean for SNP ¢ when C = (0,1) will be (v4,0,s,7B,1,;)- The covariance matrix
is inferred in a similar way (described below). To predict (Ya,c4,i,¥B,cn,:)" for
C = (3,0),(2,1),(1,2), (0,3),(4,0),(3,1),..., we use model 1. For example, we
first use the estimates of y4,0,:, YA4,1,i, YA,2,; s outcomes in model (1) for values
of Cyx = 0,1, 2 respectively, fit the model, and obtain estimates of S4,; and ¢4 ;,
which permit us to predict y4,3,, for Cq4 = 3.

We now describe how we infer X ; for cases other than C = (2,0), (1,1),(0,2)
using the estimates we already have. For the A and B variance components
(the diagonal entry) of the covariance matrix, we simply assume they depend
only on ¢4 and cp respectively. For ¢4 > 2 and ¢g > 2 we assume the same
variance as ¢4 = 2 and cg = 2 respectively. We therefore use the estimates of
the six parameters: 0a,c,.i,ca = 0,1,2, 0Bcp.i,-cB = 0,1,2 and do not need to
predict any new values. The correlation component is a bit more difficult. We
assume that the correlation coefficient when C4 > 0 and Cg > 0 is the same
as C = (1,1). The rationale for this is that correlations are due to PCR effects
being different from sample to sample. Thus if both allele fragments are present,
the resulting quantities will be similar regardless of the starting quantities. When
one of the two alleles is not present (PCR no longer makes it grow) we assume
that the correlation for case where C'4 > 0 but Cg = 0 is the same as C = (2,0)
and C4 = 0 but Cg > 0 the same as C = (0,2). For C = (0,0) we simply
assume independence. With this assumption in place we can produce conditional
expectations for any value of C given the observed 0s, described as follows.

With the model parameter estimates in place we are able to provide posterior
probabilities for allele specific copy number. Furthermore, we can compute these
posterior probabilities for total copy number:

[Ca,i,j + CB,ij = c|0i]

& In this extended abstract we actually use robust (to outliers) versions of these sample
means and covariances
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x Y [6:4]Ci; = €] x[Cij =]

{c: CA+CB=C}

where [0;;|C;,; = c] is the bivariate normal distribution defined by model (3).
The marginal probability of the C pair can be pre-specified and used to control
specificity and sensitivity for any copy number value. We can obtain mean-
ingful values by decomposing the probability into: Pr(Ca;; = ¢a,Cgs,; =
CB) = Pr(CA,,-,j = CA,CB,i’j = CB|CA’1',]' + CB,z‘,j = C) PI‘(CA,Z',J' + CB,,',]' = C).
The first component relates to the proportion of each genotype in the popula-
tion and can be computed using the Hardy-Weinberg Equilibrium for diploids
(Ca,i,; +Cg,i,; = 2). The second component relates to the probability of each al-
teration ¢ = 0,1, 3,4, ... which is unknown. We recommend the user define these
probabilities to control specificity and sensitivity. For the examples shown in this
extended abstract we assigned equal probabilities to C4 ; ;+Cp,i; = 0,1,...,6.9
Once we have calculated the probabilities above we can provide estimates of copy
number by, for example, computing the expected value of C' = C4 + Cp.
A summary of the algorithm:

1. For each array, we obtain the pre-processed probe-level log intensities from
snpRMA, the pre-processing algorithm used by CRLMM. These resulting
measurements are 84,04, _,0p +,0p,_ for each SNP.

2. We estimate the conditional probability of these measurements, given al-
lele specific copy number. We assume a bivariate normal for the A and B
alleles at each copy number pair. This reduces the number of parameters
greatly and we can estimate them precisely using a large training set. We
use genotype calls to treat the allele specific copy number as known. We do
this independently for sense (+) and antisense (-). More specifically:

3. We assume the prior probability for the joint distribution of C'4 and Cp is
a uniform distribution.

4. For a new dataset, we use the above estimates to calculate the posterior
probability for C4 and Cg being 0,1,2,...,K (K is the maximum copy
number permitted). We average the sense and antisense results.

5. Finally, we compute the posterior probability of C4+Cp being 0,1,2,..., K.

5 Results

We now describe some of the applications of the hierarchical model described
above. In general we refer to our procedure as the Copy Number-Robust Linear
Model and Mixture Model (CN-RLMM) procedure.

Figure 3 gives the SNP-specific bivariate normal distribution of 8 for C =
(07 0)7 (07 1)7 (17 0)7 (07 2)7 (]‘7 ]‘)7 (27 0)7 (07 3)7 (]‘7 2)7 (27 1)7 (37 0)7 depiCted in ellipses
(95% confidence regions). These are estimated from the control data as described

9 Remember that we perform the above calculation separately for the sense and anti-
sense values. A final estimate of the posterior probability simply average these two
values.
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in Section 2. Figure 3A and 3B give the sense and antisense-specific distribu-
tions for a SNP on chromosome X. We observe the extrapolated distribution of
0s given C = (0,1),(1,0) coincide with the observed Os from 45 male samples
that were not used in training. Similarly, figure 3C and 3D give the sense and
antisense-specific distributions for a SNP on chromosome 21 and we observe that
our extrapolated distributions coincide with the observed s from 20 Trisomy
samples. This demonstrates that our assumptions seem to provide reasonable es-
timates of the conditional distribution of copy number the cases predicted with
mode (1) (C = (0,0),(0,1), (1,0), (0,3), (1,2), (2,1), (3,0)).

A) Trisomy Chromosome 21 B) Male Chromosome X C) Accuracy rate

6
I
6
I
%Correct calls
0I8

o~ : . - o~ ,EW - - CN=3
I D

T T T T T T T T
CN c.CNAT CNAT CN c.CNAT CNAT 0.0 0.2 0.4 0.6 0.8 1.0
1-%calls

Fig. 4. CN-RLMM results. CN is abbreviation for CN-RLMM, c¢.CNAT is CRLMM
preprocessed probes + CNAT. Figure A) shows the expected copy number given prepro-
cessed log intensities for 817 SNPs on Chromosome 21 of 20 Down syndrome patients
(with identified Trisomy 21). Figure B) shows the expected copy number given prepro-
cessed log intensities for 807 SNPs on Chromosome X of 45 male trio samples. Figure
C) shows the average true positive rate versus l-average percentage of call rate for 2
Down syndrome patients. The points demonstrate some of the corresponding posterior
probability values used as cut-offs.

In Figure 4A and 4B we demonstrate how our results have much better
precision than CNAT and values with and without probe- sequence and fragment
length corrections. We achieve this precision without any loss of accuracy. Note
that we could not get PLASQ to work with our data and no software is available
to implement CARAT. The preprocessing used by dChip is very similar to CNAT
and thus we expect results to be the same. Keep in mind the smoothing step is
not being assessed. We observe that the degree of improvement is not equivalent
for copy numbers 3 and copy number 1. This is expected because it is easier to
detect a 2 times difference (copy number 2 versus 1) than to detect a 1.5 times
difference (copy number 3 versus 2).

The most useful application of our results is that we provide improved single-
point copy number estimates with reliable uncertainty assessment without the
need to re-calibrate for new samples. Note that we can easily control our false
positive rate by simply restricting calls to SNPs with posterior probabilities close
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to 1. Figure 4C demonstrates that we can get usable single-point copy number
estimates for a large amount of SNPs. Notice that the worst performance is
observed for CN=3. This is likely due to the fact that we used model (1) to
extrapolate (as done by CARAT).

6 Discussion

We have presented a mixture model approach that permits us to obtain im-
proved copy number estimate as well as reliable single-point copy number calls.
A major advantage of our methodology over the best existing one, e.g. CARAT
and PLASQ), is that we explicitly model the conditional joint distribution of the
intensities given the copy number values. This permits us to model the strong
correlation that sometimes exists between A and B and exploit this information
to improve bottom-line results. This advantage is best exemplified by Figure 3C
where the C = (2,1),(1,1), and (1, 2) are usefully separable only if we take this
correlation into account. Furthermore, avoiding the linearity assumption made
by these other procedures seems to help as well. This is best demonstrated by
the fact that we perform worst in cases where we rely on this assumption, i.e.
making calls for CN = 3. Finally, because we use training data to fit the mixture
models, the procedure is entirely linear. Other procedures, such as CARAT and
PLASQ rely on non-linear algorithms that present many practical problems.

We have plans to extend and improve our approach in various ways. First, we
plan to implement it for the 500K chips. Second, we believe this approach can
be used with Illumina’s SNP array and thus plan to try it with data from this
platform. Third, we plan to add another level to the model that will permit
us to borrow strength across the thousands of SNPs to better estimate the
parameters of the conditional probabilities. We plan to use an approach similar
to that of CRLMM. Fourth, we plan to look for ways to avoid using the linearity
assumption to infer the parameter of conditional distributions when C > 2. We
plan to use general regression approaches that predict these parameters from the
known parameters C' <= 2. We can train this regression model with Trisomy
data (C = 3) and design experiments to be able to train for C' > 3. Fifth, we
plan to look for better ways of combining the results form sense and antisense
probes. It is desirable to detect and ignore misbehaving strands. Finally, we have
observed correlation between parameter estimates coming for proximal locations
on the chromosome. This could be due to the fact that various SNPs are on each
of the fragments that are amplified. We will explore ways to exploit this finding.

It is possible that the reference set we use has an influence on our results.
We plan to study this problem in more detail in the near future. We also plan to
substantially increase the size of the reference set to reduce the effect of outlier
samples. By combining various publicly available assessment experiments, we
plan to develop an comparison protocol for analysis methods. This will help us
determine not only which methods work better, but to explore if subsets of the
reference set provide better results.
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Notice that we did not offer any solutions for the smoothing step as we are
more interested in developing techniques for single-point estimates. We expect
some of the existing techniques to work well when applied to our estimates of
copy number. However, because we explicitly model the conditional probabilities
it is possible to develop new methods that impose the across-chromosome corre-
lation through those probabilities instead of the actual copy number estimates.
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