427 research outputs found

    The Viral TRAF Protein (ORF111L) from Infectious Spleen and Kidney Necrosis Virus Interacts with TRADD and Induces Caspase 8-mediated Apoptosis

    Get PDF
    Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus of the Iridoviridae family. It causes a serious and potentially pandemic disease in wild and cultured fishes. ISKNV infection induces evident apoptosis in mandarin fish (Siniperca chuatsi) and zebrafish (Danio renio). However, the mechanism is still unknown. After a genome-wide bioinformatics analysis of ISKNV-encoded proteins, the ISKNV open reading frame 111L (ORF111L) shows a high similarity to the tumour necrosis factor receptor-associated factor (TRAF) encoded by fish, mice and mammals, which is essential for apoptotic signal transduction. Moreover, ORF111L was verified to directly interact with the zebrafish TNF receptor type 1 associated death domain protein (TRADD). A recombinant plasmid containing the DNA sequence of ORF111L was constructed and microinjected into zebrafish embryos at the 1–2 cell stage to investigate its biological function in vivo. ORF111L overexpression in the embryos resulted in increased apoptosis. ORF111L-induced apoptosis was clearly associated with significant caspase 8 upregulation and activation. The knockdown of zebrafish caspase 8 expression effectively blocked the apoptosis induced by ORF111L overexpression. Significantly, ORF111L overexpression resulted in much stronger effect on caspase 8 and caspase 3 upregulation compared to zebrafish TRAF2. This is the first report of a viral protein similar to TRAF that interacts with TRADD and induces caspase 8-mediated apoptosis, which may provide novel insights into the pathogenesis of ISKNV infection

    Comparison of sterols and fatty acids in two species of Ganoderma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two species of <it>Ganoderma, G. sinense </it>and <it>G. lucidum</it>, are used as <it>Lingzhi </it>in China. Howerver, the content of triterpenoids and polysaccharides, main actives compounds, are significant different, though the extracts of both <it>G. lucidum </it>and <it>G. sinense </it>have antitumoral proliferation effect. It is suspected that other compounds contribute to their antitumoral activity. Sterols and fatty acids have obvious bioactivity. Therefore, determination and comparison of sterols and fatty acids is helpful to elucidate the active components of <it>Lingzhi</it>.</p> <p>Results</p> <p>Ergosterol, a specific component of fungal cell membrane, was rich in <it>G. lucidum </it>and <it>G. sinense</it>. But its content in <it>G. lucidum </it>(median content 705.0 μg·g<sup>-1</sup>, range 189.1-1453.3 μg·g<sup>-1</sup>, n = 19) was much higher than that in <it>G. sinense </it>(median content 80.1 μg·g<sup>-1</sup>, range 16.0-409.8 μg·g<sup>-1</sup>, n = 13). Hierarchical clustering analysis based on the content of ergosterol showed that 32 tested samples of <it>Ganoderma </it>were grouped into two main clusters, <it>G. lucidum </it>and <it>G. sinense</it>. Hierarchical clustering analysis based on the contents of ten fatty acids showed that two species of <it>Ganoderma </it>had no significant difference though two groups were also obtained. The similarity of two species of <it>Ganoderma </it>in fatty acids may be related to their antitumoral proliferation effect.</p> <p>Conclusions</p> <p>The content of ergosterol is much higher in <it>G. lucidum </it>than in <it>G. sinense</it>. Palmitic acid, linoleic acid, oleic acid, stearic acid are main fatty acids in <it>Ganoderma </it>and their content had no significant difference between <it>G. lucidum </it>and <it>G. sinense</it>, which may contribute to their antitumoral proliferation effect.</p

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of the production cross section for W-bosons in association with jets in pp collisions at s=7 TeV with the ATLAS detector

    Get PDF

    Measurement of event-shape observables in Z→ℓ+ℓ− events in pp collisions at √ s=7 TeV with the ATLAS detector at the LHC

    Get PDF
    Event-shape observables measured using charged particles in inclusive ZZ-boson events are presented, using the electron and muon decay modes of the ZZ bosons. The measurements are based on an integrated luminosity of 1.1fb11.1 {\rm fb}^{-1} of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy s=7\sqrt{s}=7 TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the ZZ-boson decay, are measured in different ranges of transverse momentum of the ZZ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and F\mathcal{F}-parameter, which are in particular sensitive to properties of the underlying event at small values of the ZZ-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high ZZ-boson transverse momenta than at low ZZ-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.Comment: 36 pages plus author list + cover page (54 pages total), 14 figures, 4 tables, submitted to EPJC, All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-0

    Measurement of the cross-section for b-jets produced in association with a Z boson at root s=7 TeV with the ATLAS detector ATLAS Collaboration

    Get PDF
    A measurement is presented of the inclusive cross-section for b-jet production in association with a Z boson in pp collisions at a centre-of-mass energy of root s = 7 TeV. The analysis uses the data sample collected by the ATLAS experiment in 2010, corresponding to an integrated luminosity of approximately 36 pb(-1). The event selection requires a Z boson decaying into high P-T electrons or muons, and at least one b-jet, identified by its displaced vertex, with transverse momentum p(T) > 25 GeV and rapidity vertical bar y vertical bar < 2.1. After subtraction of background processes, the yield is extracted from the vertex mass distribution of the candidate b-jets. The ratio of this cross-section to the inclusive Z cross-section (the average number of b-jets per Z event) is also measured. Both results are found to be in good agreement with perturbative QCD predictions at next-to-leading order
    corecore