161 research outputs found

    Loss of AND-34/BCAR3 Expression in Mice Results in Rupture of the Adult Lens

    Get PDF
    PURPOSE. AND-34/BCAR3 (Breast Cancer Anti-Estrogen Resistance 3) associates with the focal adhesion adaptor protein, p130CAS/BCAR1. Expression of AND-34 regulates epithelial cell growth pattern, motility, and growth factor dependence. We sought to establish the effects of the loss of AND-34 expression in a mammalian organism. METHODS. AND-34−/− mice were generated by homologous recombination. Histopathology, in situ hybridization, and western blotting were performed on murine tissues. RESULTS. Western analyses confirmed total loss of expression in AND-34−/− splenic lymphocytes. Mice lacking AND-34 are fertile and have normal longevity. While AND-34 is widely expressed in wild type mice, histologic analysis of multiple organs in AND-34−/− mice is unremarkable and analyses of lymphocyte development show no overt changes. A small percentage of AND-34−/− mice show distinctive small white eye lesions resulting from the migration of ruptured cortical lens tissue into the anterior chamber. Following initial vacuolization and liquefaction of the lens cortex first observed at postnatal day three, posterior lens rupture occurs in all AND-34−/− mice, beginning as early as three weeks and seen in all mice at three months. Western blot analysis and in situ hybridization confirmed the presence of AND-34 RNA and protein in lens epithelial cells, particularly at the lens equator. Prior data link AND-34 expression to the activation of Akt signaling. While Akt Ser 473 phosphorylation was readily detectable in AND-34+/+ lens epithelial cells, it was markedly reduced in the AND-34−/− lens epithelium. Basal levels of p130Cas phosphorylation were higher in AND-34+/+ than in AND-34−/− lens epithelium. CONCLUSIONS. These results demonstrate the loss of AND-34 dysregulates focal adhesion complex signaling in lens epithelial cells and suggest that AND-34-mediated signaling is required for maintenance of the structural integrity of the adult ocular lens.National Institutes of Health (RO1 CA114094); Logica Foundatio

    CK2 inhibitor CX-4945 destabilizes NOTCH1 and synergizes with JQ1 against human T-acute lymphoblastic leukemic cells

    Get PDF
    Here we show that CK2 inhibition by CX-4945 destabilizes NOTCH1 and synergizes with JQ1 to induce apoptosis in human T-ALL cells, implicating an alternative strategy to target NOTCH1 signaling in refractory/relapsed T-ALL

    Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of amyloidogenic light chain-mediated cardiotoxicity

    Get PDF
    AL amyloidosis is the consequence of clonal production of amyloidogenic immunoglobulin light chain (LC) proteins, often resulting in a rapidly progressive and fatal amyloid cardiomyopathy. Recent work has found that amyloidogenic LC directly initiate a cardio-toxic response underlying the pathogenesis of the cardiomyopathy; however, the mechanisms that contribute to this proteotoxicity remain unknown. Using human amyloidogenic LC isolated from patients with amyloid cardiomyopathy, we reveal that dysregulation of autophagic flux is critical for mediating amyloidogenic LC proteotoxicity. Restoration of autophagic flux by pharmacological intervention using rapamycin protected against amyloidogenic light chain protein-induced pathologies including contractile dysfunction and cell death at the cellular and organ level and also prolonged survival in an in vivo zebrafish model of amyloid cardiotoxicity. Mechanistically, we identify impaired lysosomal function to be the major cause of defective autophagy and amyloidogenic LC-induced proteotoxicity. Collectively, these findings detail the downstream molecular mechanisms underlying AL amyloid cardiomyopathy and highlight potential targeting of autophagy and lysosomal dysfunction in patients with amyloid cardiomyopathy

    Identification of hematein as a novel inhibitor of protein kinase CK2 from a natural product library

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Casein kinase 2 (CK2) is dysregulated in various human cancers and is a promising target for cancer therapy. To date, there is no small molecular CK2 inhibitor in clinical trial yet. With the aim to identify novel CK2 inhibitors, we screened a natural product library.</p> <p>Methods</p> <p>We adopted cell-based proliferation and CK2 kinase assays to screen CK2 inhibitors from a natural compound library. Dose-dependent response of CK2 inhibitors <it>in vitro </it>was determined by a radioisotope kinase assay. Western blot analysis was used to evaluate down stream Akt phosphorylation and apoptosis. Apoptosis was also evaluated by annexin-V/propidium iodide (PI) labeling method using flow cytometry. Inhibition effects of CK2 inhibitors on the growth of cancer and normal cells were evaluated by cell proliferation and viability assays.</p> <p>Results</p> <p>Hematein was identified as a novel CK2 inhibitor that is highly selective among a panel of kinases. It appears to be an ATP non-competitive and partially reversible CK2 inhibitor with an IC<sub>50 </sub>value of 0.55 μM. In addition, hematein inhibited cancer cell growth partially through down-regulation of Akt phosphorylation and induced apoptosis in these cells. Furthermore, hematein exerted stronger inhibition effects on the growth of cancer cells than in normal cells.</p> <p>Conclusion</p> <p>In this study, we showed that hematein is a novel selective and cell permeable small molecule CK2 inhibitor. Hematein showed stronger growth inhibition effects to cancer cells when compared to normal cells. This compound may represent a promising class of CK2 inhibitors.</p

    Functional Polymorphism of the CK2α Intronless Gene Plays Oncogenic Roles in Lung Cancer

    Get PDF
    Protein kinase CK2 is frequently up-regulated in human cancers, although the mechanism of CK2 activation in cancer remains unknown. In this study, we investigated the role of the CK2α intronless gene (CSNK2A1P, a presumed CK2α pseudogene) in the pathogenesis of human cancers. We found evidence of amplification and over-expression of the CSNK2A1P gene in non- small cell lung cancer and leukemia cell lines and 25% of the lung cancer tissues studied. The mRNA expression levels correlated with the copy numbers of the CSNK2A1P gene. We also identified a novel polymorphic variant (398T/C, I133T) of the CSNK2A1P gene and showed that the 398T allele is selectively amplified over the 398C allele in 101 non-small cell lung cancer tissue samples compared to those in 48 normal controls (p = 0.013<0.05). We show for the first time CSNK2A1P protein expression in transfected human embryonic kidney 293T and mouse embryonic fibroblast NIH-3T3 cell lines. Both alleles are transforming in these cell lines, and the 398T allele appears to be more transforming than the 398C allele. Moreover, the 398T allele degrades PML tumor suppressor protein more efficiently than the 398C allele and shows a relatively stronger binding to PML. Knockdown of the CSNK2A1P gene expression with specific siRNA increased the PML protein level in lung cancer cells. We report, for the first time, that the CSNK2A1P gene is a functional proto-oncogene in human cancers and its functional polymorphism appears to degrade PML differentially in cancer cells. These results are consistent with an important role for the 398T allele of the CSNK2A1P in human lung cancer susceptibility

    Using population admixture to help complete maps of the human genome

    Get PDF
    Tens of millions of base pairs of euchromatic human genome sequence, including many protein-coding genes, have no known location in the human genome. We describe an approach for localizing the human genome's missing pieces by utilizing the patterns of genome sequence variation created by population admixture. We mapped the locations of 70 scaffolds spanning four million base pairs of the human genome's unplaced euchromatic sequence, including more than a dozen protein-coding genes, and identified eight large novel inter-chromosomal segmental duplications. We find that most of these sequences are hidden in the genome's heterochromatin, particularly its pericentromeric regions. Many cryptic, pericentromeric genes are expressed in RNA and have been maintained intact for millions of years while their expression patterns diverged from those of paralogous genes elsewhere in the genome. We describe how knowledge of the locations of these sequences can inform disease association and genome biology studies

    Genome-Wide Association and Trans-ethnic Meta-Analysis for Advanced Diabetic Kidney Disease: Family Investigation of Nephropathy and Diabetes (FIND)

    Get PDF
    Diabetic kidney disease (DKD) is the most common etiology of chronic kidney disease (CKD) in the industrialized world and accounts for much of the excess mortality in patients with diabetes mellitus. Approximately 45% of U.S. patients with incident end-stage kidney disease (ESKD) have DKD. Independent of glycemic control, DKD aggregates in families and has higher incidence rates in African, Mexican, and American Indian ancestral groups relative to European populations. The Family Investigation of Nephropathy and Diabetes (FIND) performed a genome-wide association study (GWAS) contrasting 6,197 unrelated individuals with advanced DKD with healthy and diabetic individuals lacking nephropathy of European American, African American, Mexican American, or American Indian ancestry. A large-scale replication and trans-ethnic meta-analysis included 7,539 additional European American, African American and American Indian DKD cases and non-nephropathy controls. Within ethnic group meta-analysis of discovery GWAS and replication set results identified genome-wide significant evidence for association between DKD and rs12523822 on chromosome 6q25.2 in American Indians (P = 5.74x10-9). The strongest signal of association in the trans-ethnic meta-analysis was with a SNP in strong linkage disequilibrium with rs12523822 (rs955333; P = 1.31x10-8), with directionally consistent results across ethnic groups. These 6q25.2 SNPs are located between the SCAF8 and CNKSR3 genes, a region with DKD relevant changes in gene expression and an eQTL with IPCEF1, a gene co-translated with CNKSR3. Several other SNPs demonstrated suggestive evidence of association with DKD, within and across populations. These data identify a novel DKD susceptibility locus with consistent directions of effect across diverse ancestral groups and provide insight into the genetic architecture of DKD

    Transancestral mapping and genetic load in systemic lupus erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender and ethnic disparities. We report a large transancestral association study of SLE using Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA and 16 in HA (B50% of these regions have multiple independent associations); these include 24 novel SLE regions (Po5 10 8), refined association signals in established regions, extended associations to additional ancestries, and a disentangled complex HLA multigenic effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the three ancestries identifies both ancestry-dependent and ancestry-independent contributions to SLE risk. Our results are consistent with the unique and complex histories of the populations sampled, and collectively help clarify the genetic architecture and ethnic disparities in SL

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity
    corecore