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Research Article

Lysosomal dysfunction and impaired autophagy
underlie the pathogenesis of amyloidogenic light
chain-mediated cardiotoxicity
Jian Guan1,†, Shikha Mishra1,†, Yiling Qiu1, Jianru Shi1,‡, Kyle Trudeau2, Guy Las2, Marc Liesa2, Orian S

Shirihai2, Lawreen H Connors3, David C Seldin3, Rodney H Falk4, Calum A MacRae1 & Ronglih Liao1,4,*

Abstract

AL amyloidosis is the consequence of clonal production of amyloi-
dogenic immunoglobulin light chain (LC) proteins, often resulting
in a rapidly progressive and fatal amyloid cardiomyopathy. Recent
work has found that amyloidogenic LC directly initiate a cardio-
toxic response underlying the pathogenesis of the cardiomyopathy;
however, the mechanisms that contribute to this proteotoxicity
remain unknown. Using human amyloidogenic LC isolated from
patients with amyloid cardiomyopathy, we reveal that dysregula-
tion of autophagic flux is critical for mediating amyloidogenic LC
proteotoxicity. Restoration of autophagic flux by pharmacological
intervention using rapamycin protected against amyloidogenic
light chain protein-induced pathologies including contractile
dysfunction and cell death at the cellular and organ level and also
prolonged survival in an in vivo zebrafish model of amyloid cardio-
toxicity. Mechanistically, we identify impaired lysosomal function
to be the major cause of defective autophagy and amyloidogenic
LC-induced proteotoxicity. Collectively, these findings detail the
downstream molecular mechanisms underlying AL amyloid cardio-
myopathy and highlight potential targeting of autophagy and lyso-
somal dysfunction in patients with amyloid cardiomyopathy.
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Introduction

AL or light chain amyloidosis (formerly known as primary amyloi-

dosis) is the most commonly diagnosed systemic amyloidosis in the

United States and Europe (Merlini et al, 2011), in which widespread

tissue infiltration and deposition of amyloid fibrils derived from

clonal immunoglobulin light chain (LC) proteins causes multi-organ

dysfunction. Greater than 70% of patients with primary LC amyloi-

dosis present with cardiac involvement (Madan et al, 2010; Falk,

2011), which can progress to debilitating heart failure symptoms

and early cardiovascular death (Falk, 2005; Falk, 2011). To date,

there are no targeted treatments for amyloid cardiomyopathy (Falk,

2011), owing to a lack of understanding of the basic mechanisms

that underlie the pathogenesis of the disease. While amyloid fibril

deposition within the heart has long been hypothesized to be

responsible for disease pathophysiology, there often is dissociation

between the degree of amyloid fibril deposition and cardiovascular

outcomes. We and others have found that circulating amyloidogenic

light chain proteins (AL-LC) directly initiate a potent cardiotoxic

effect, independent of fibril deposition, and this cardiotoxicity is crit-

ical to manifestations of amyloid cardiomyopathy, both in vitro and

in vivo (Liao et al, 2001; Brenner et al, 2004; Migrino et al, 2010,

2011; Shi et al, 2010; Sikkink & Ramirez-Alvarado, 2010; Shin et al,

2012). While these findings have changed our understanding of AL

amyloid cardiomyopathy, from one of just passive fibril infiltration

to also acknowledging a direct proteotoxicity, the basic mechanisms

by which this proteotoxicity results in cardiomyopathy remain

unknown. Furthermore, an increase in oxidative stress and reactive

oxygen species (ROS) production is one of the consequences associ-

ated with AL-mediated proteotoxicity. However, the source for this

increased ROS is unknown.

A growing body of evidence demonstrates that mitochondrial

quality control alterations contribute and can be central to a number

of human diseases including Alzheimer’s, Parkinson’s, Hunting-

ton’s, diabetes and cardiovascular disease (Harris & Rubinsztein,

2012; Nixon, 2013). The heart is particularly sensitive to perturba-

tions of mitochondrial function, given the energetic requirements of

contractile function. Removal of damaged mitochondria is essential
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to prevent increased ROS generation, decreased ATP production and

loss of cellular function. Damaged mitochondria are cleared intracel-

lularly by a complex quality control mechanism involving mito-

phagy and the lysosome. Mitophagy refers to a macro-autophagic

process that selectively removes mitochondria. Of note, macro-

autophagy has also been implicated in handling proteotoxic events

that cannot be mediated by the proteasome. Herein, utilizing in vitro

isolated cardiomyocytes and an in vivo zebrafish model of AL-LC

toxicity, we find that disruption of autophagic flux is the underlying

mechanism critical for the induction of mitochondrial dysfunction

and development of AL amyloid cardiomyopathy.

Results

AL-LC triggers mitochondrial dysfunction and ROS production

We have shown that human AL-LC protein provokes excessive ROS

production and subsequent cellular dysfunction and cell death in

isolated cardiomyocytes (Brenner et al, 2004; Shi et al, 2010);

however, the source of ROS production has yet to be identified. To

determine whether mitochondria contribute to AL-LC-induced ROS

production, isolated cardiomyocytes were pretreated with the mito-

chondrial-targeted ROS scavenger, Mito-TEMPO, and exposed to

human AL-LC. Using the ROS-sensitive fluorescent dye, DCFDA, we

found that increased AL-LC-elicited ROS was abolished with Mito-

TEMPO to levels comparable to cells treated with vehicle (Veh) or

control light chain (Con-LC) proteins isolated from patients with

multiple myeloma (Fig 1A). In addition, AL-LC treatment of cardio-

myocytes was associated with decreased mitochondrial membrane

potential (depolarization) as determined by TMRE (Fig 1B). One

process that could explain this depolarization is decreased mito-

chondrial bioenergetics function associated with decreased ATP

synthesis. In order to confirm this, we measured cellular ATP

levels, as mitochondria are the main contributor to ATP levels in

cardiomyocytes. Total ATP levels were decreased by AL-LC and not

by addition of Con-LC (Fig 1C). Thus, these data collectively

demonstrate mitochondrial dysfunction and increased mitochon-

drial ROS production caused by AL-LC in cardiomyocytes.

AL-LC impairs autophagic flux

Defective mitochondria are cleared intracellularly by a complex

macro-autophagic response (Codogno, 2014). By Western blot,

levels of the autophagy marker LC3-II were markedly increased in

cardiomyocytes exposed to AL-LC (Fig 1D), as well as the number

of autophagosomes in AL-LC-exposed cardiomyocytes overexpress-

ing GFP-LC3 (Mizushima et al, 2010), (Supplementary Fig S1).

Increased LC3-II levels and number of autophagosomes (detected as

GFP-LC3 punctae) may be indicative of either elevated autophagy

induction or defective clearance. To distinguish between induction

and clearance of autophagosomes, E64d and Pepstatin A were used

to inhibit lysosomal enzymes and impede autophagosome clear-

ance. LC3-II levels accumulated less after lysosome inhibition in

AL-LC cardiomyocytes, indicative of a decrease in autophagosome

clearance. This decrease was explained both by increased basal

LC3-II levels and by decreased LC3-II levels after E64D and Pepstatin

A treatments in AL-LC cardiomyocytes when compared to control

(Fig 1E). Furthermore, AL-LC resulted in an increase in p62 accu-

mulation, an established marker of autophagic clearance (Fig 1F).

We next addressed whether this alteration in macroautophagy was

also associated with decreased mitophagic clearance. Immunofluo-

rescent staining of isolated adult cardiomyocytes exposed to AL-LC

showed an increase in p62 levels co-localized with mitochondria,

suggesting a perturbation in mitophagy (Fig 1G). Taken together,

our data suggest a defect in autophagy flux in cardiomyocytes

subjected to human AL-LC protein, with a corresponding inhibition

of mitochondrial clearance.

Restoration of autophagic flux attenuates AL-LC-induced cellular
dysfunction and cell death in vitro

To determine whether autophagy dysregulation was causal for

AL-LC-induced cardiotoxicity, rapamycin, an inhibitor of mTOR

signaling and a potent enhancer of both autophagosome formation

and clearance, was used to restore autophagic flux in cardiomyocytes

exposed to AL-LC. Restoration of autophagosome clearance by rapa-

mycin was confirmed by significant reduction in p62 accumulation in

cardiomyocytes exposed to AL-LC (Fig 2A). Concomitant with

▸Figure 1. AL-LC causes mitochondrial dysfunction and autophagy dysregulation in vitro.

A Using the fluorescent indicator DCFDA, ROS was measured in isolated cardiomyocytes treated with vehicle, Con-LC, AL-LC or AL-LC + Mito-TEMPO. Representative
fluorescent and bright field images are shown in the top panels, and quantitative analysis is summarized in the graph below. AL-LC but not Con-LC increased ROS
and this was blocked by Mito-TEMPO, indicating that ROS is derived from mitochondria. Scale bar = 100 lm. N = 3. *P = 0.020.

B Mitochondrial membrane potential was measured using TMRE fluorescent dye in cardiomyocytes following 24-h treatment with vehicle, Con-LC or AL-LC.
Representative TMRE fluorescent and bright field microscopy images are shown in the top panels, and TMRE fluorescence signal was quantified and summarized
below. AL-LC exposure resulted in loss of mitochondrial membrane potential compared to the other groups. Scale bar = 50 lm. N = 3. *P = 0.031.

C Quantitative summary of cellular ATP levels in cardiomyocytes following 24-h exposure to vehicle, Con-LC or AL-LC. N = 3. *P = 0.020.
D Immunoblot analysis of LC3-II expression in cardiomyocytes following 24-h exposure to vehicle, Con-LC or AL-LC. GAPDH was used as a loading control. Quantitative

results are shown in the graph below for comparison. LC3-II expression was significantly increased in the AL-LC group compared to vehicle and Con-LC. N = 3.
*P = 1.9 × 10�6.

E Immunoblot analysis of AL-LC-induced LC3-II expression in the presence of lysosomal inhibitors E64d and Pepstatin A. GAPDH is used as a loading control.
Quantitative results in the graph below show that LC3-II levels in the AL-LC group do not exceed vehicle-treated LC3-II levels following lysosomal inhibition,
indicating minimal perturbation to initiation. N = 6. *P = 1.4 × 10�6, #P = 0.041.

F Immunoblot and quantitative analysis of p62 expression in cardiomyocytes following 24-h exposure to vehicle, Con-LC or AL-LC. Results show a decrease in
autophagic flux seen by increased p62 accumulation in the AL-LC group. N = 3. *P = 0.033.

G Confocal imaging of immunofluorescence staining of p62 (red) in cardiomyocytes following 24-h exposure to vehicle, Con-LC or AL-LC. Mitochondrial co-localization
was visualized using mitochondrial protein COX4 (green) co-staining, and nuclear staining with DAPI (blue). Scale bar = 10 lm.

Source data are available online for this figure.
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decreased p62 levels, rapamycin-treated cardiomyocytes showed

significant attenuation of both mitochondrial dysfunction and intra-

cellular ROS levels (Fig 2B and C), and protection against AL-LC-

induced cellular contractile dysfunction (Fig 2D) and concomitant

impaired intracellular calcium homeostasis (Fig 2E) as well as cell

death (Fig 2F). Importantly, the concentration of rapamycin used

(10 nM) (Dehay et al, 2010) did not affect downstream substrates of

mTOR as measured by S6 kinase activation (Supplementary Fig S2).

In addition, pharmacologic inhibition of autophagy by chloroquine

(CQ) reversed rapamycin attenuation of p62 accumulation in cardio-

myocytes exposed to AL-LC (Fig 2G) and abrogated the beneficial

effects of rapamycin on contractile function (Fig 2D), calcium tran-

sient amplitude (Fig 2F) and cell survival (Fig 2H), consistent with

rapamycin protecting against AL-LC via improvement of autophagic

flux.

Rapamycin protects against AL-LC proteotoxicity in vivo

To determine the role of AL-LC-induced impaired autophagy in vivo,

we utilized a recently reported zebrafish model of AL-LC cardiotox-

icity, characterized by impaired cardiac function and early cardio-

vascular death following injection of human AL-LC (Mishra et al,

2013). Consistent with our in vitro findings, zebrafish injected with

AL-LC showed increased LC3-II and p62 levels (Fig 3A–B) compared

to Con-LC. Electron microscopy of heart tissue revealed increased

autophagosome number as indicated by the accumulation of

double-membrane vesicle structures with AL-LC exposure (Fig 3C).

Autophagic flux was restored in AL-LC-injected zebrafish via treat-

ment with 10 nM rapamycin (Tobin & Beales, 2008), seen by

decreased p62 comparable to control levels (Fig 3D). Peak aortic

flow, an indicator of cardiac function, was decreased in AL-LC-

injected fish (Fig 3E) and restored to control levels with rapamycin

treatment. Similarly, AL-LC-triggered cell death in zebrafish hearts

was reduced following rapamycin treatment (Fig 3F and G).

Survival was markedly impaired following injection of human

AL-LC in zebrafish and was significantly rescued with rapamycin

treatment (Fig 3H). Rapamycin did not alter survival in Con-LC

animals (Fig 3H). Together, our in vivo data provide further

evidence for the central role of autophagic dysfunction in the patho-

genesis of amyloid cardiotoxicity and highlight the use of rapamycin

as a potential therapeutic approach for treatment of this disease.

Lysosomal dysfunction directly contributes to AL-LC-triggered
impaired autophagy

Our results suggest that AL-LC-induced dysregulation of autophagic

flux may reside at the stage of autophagosome clearance, the final

step in the autophagy process in which the lysosome plays a pivotal

role. We sought to examine lysosomal function in response to AL-LC

exposure. The number of acidic vesicles (including lysosomes) per

cell, as measured using LysoTracker staining, was markedly

compromised in isolated cardiomyocytes exposed to AL-LC for 24 h

(Fig 4A), concomitant with a loss of lysosomal acidity, assessed by

LysoSensor, a pH-sensitive fluorescent probe (Fig 4B) 24 h follow-

ing AL-LC exposure. Associated with loss of lysosomal function,

quantitative PCR revealed downregulation of lysosome-related

genes including cathepsin D, lysosomal-specific vacuolar ATPases

(Fig 4C), as well as a transcriptional regulator of lysosomal biogene-

sis and function, TFEB (transcription factor EB) at the mRNA

(Fig 4D) and protein (Fig 4E) levels following 24 h of AL-LC expo-

sure. Importantly, decreased TFEB expression was restored to base-

line levels following rapamycin treatment (Fig 4E).

To determine whether downregulation of TFEB is central to

AL-LC-induced cardiotoxicity, TFEB was overexpressed in isolated

cardiomyocytes (Supplementary Fig S3A) and in zebrafish (Supple-

mentary Fig S3B). Overexpression of TFEB protected against

contractile dysfunction and restored calcium transient amplitude in

cardiomyocytes exposed to AL-LC (Fig 4F–G) and prevented AL-LC-

associated cardiac cell death in vivo (Fig 4H) with greatly improved

survival (Fig 4I).

To determine the temporal importance of lysosomal and auto-

phagic dysfunction, we examined the time course of activation of

previously established critical components of the AL-LC cardiotoxic

response. We found that lysosomal function was impaired early,

within 3 h of AL-LC exposure in isolated cardiomyocytes (Fig 5A).

Six hours following AL-LC exposure, autophagic dysfunction was

▸Figure 2. Restoration of autophagic flux with rapamycin attenuates AL-LC-induced cellular dysfunction and cell death in vitro.

A Immunoblot analysis of p62 on cardiomyocytes following 24-h exposure to vehicle, Con-LC or AL-LC in the absence or presence of 10 nM rapamycin. Quantitative
results summarized below show decreased p62 expression following rapamycin treatment. N = 3. *P = 0.003, #P = 0.006.

B Mitochondrial function is rescued by rapamycin treatment, shown by quantitative analysis of mitochondrial membrane potential using TMRE dye in cardiomyocytes
following exposure to vehicle, Con-LC or AL-LC for 24 h in the presence or absence of rapamycin. N = 3. *P = 0.046, #P = 0.005 between indicated groups.

C ROS levels are reduced by treatment with rapamycin, shown using DCFDA in cardiomyocytes exposed to vehicle, Con-LC or AL-LC. N = 3. *P = 2.3 × 10�4, #P = 0.002
between indicated groups.

D Contractile function was measured in cardiomyocytes exposed to AL-LC for 24 h in the absence or presence of rapamycin with or without chloroquine (2.5 lM).
Quantitative analysis was performed by calculating percent cell shortening. N = 3. *P = 3.3 × 10�4, #P = 0.007.

E Calcium transient amplitude, measured in isolated cardiomyocytes, was quantified following exposure to vehicle or AL-LC in the presence or absence of rapamycin
with or without chloroquine. Representative tracings are shown, and quantitative analysis in the graph shows a rescue of AL-LC-induced decrease in calcium
transient amplitude following rapamycin treatment. N = 3, *P = 0.002, #P = 0.006.

F Rapamycin treatment reduces apoptosis in cardiomyocytes exposed to AL-LC. TUNEL staining was performed to quantify cell death in cardiomyocytes following
exposure to vehicle, Con-LC or AL-LC with or without rapamycin treatment. Cell death was measured as percent TUNEL-positive nuclei relative to total cell number.
N = 3. *P = 0.015, #P = 0.035 between indicated groups.

G Verification that rapamycin rescue was autophagy dependent was demonstrated using chloroquine (2.5 lM) administered to AL-LC + rapamycin-treated
cardiomyocytes. p62 accumulation was measured using immunoblot analysis, with GAPDH as a loading control. N = 5. *P = 0.023.

H Cardiomyocytes were treated with chloroquine in the presence of rapamycin, and immunoblot analysis was performed to probe for active caspase 3 levels,
normalized to GAPDH expression. N = 3. *P = 0.007.

Source data are available online for this figure.
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noted by accumulation of GFP-LC3, a result of reduced autophagic

degradation (Ni et al, 2011) (Fig 5B). Loss of mitochondrial clear-

ance was followed by decreased mitochondrial membrane potential,

as measured by the mitochondrial membrane potential-sensitive

dye TMRE (Fig 5C) at 12 and 24 h following AL-LC exposure,

respectively. Increased ROS was detected by DCFDA (Fig 5D) 24 h

following AL-LC exposure indicating it to be a late event. The

temporal cascade of molecular events triggered by the AL-LC is

summarized in Fig 5E.

Human AL amyloid cardiomyopathy is associated with impaired
autophagy and defective lysosomal function

To determine the applicability of our findings to human amyloid

cardiomyopathy, we examined markers of autophagy in heart tissue

samples obtained from patients with AL amyloid cardiomyopathy.

Electron microscopy of human heart tissue revealed dramatic differ-

ences in mitochondrial ultrastructure in amyloid cardiomyopathy,

with loss of normal spatial distribution between mitochondria and

cardiac myofilaments, as well as vacuolization, loss of cristae, swell-

ing and enlargement (Supplementary Fig S4). Significant accumula-

tion of autophagosomes was observed throughout the tissue

(Fig 6A) with increased LC3-II and p62 levels (Fig 6B and C) and a

decrease in TFEB expression (Fig 6D).

Discussion

Prior work has detailed an intrinsic cardiotoxic response to human

amyloidogenic light chain proteins that underlies the development of

AL amyloid cardiomyopathy (Liao et al, 2001; Brenner et al, 2004;

Migrino et al, 2010, 2011; Shi et al, 2010; Shin et al, 2012; Guan

et al, 2013; Mishra et al, 2013). While stress-activated kinases and

ROS generation have been identified as downstream components of

the cardiomyocyte response to human AL-LC, the fundamental cellu-

lar mechanisms underlying the proteotoxicity remain elusive. Here,

we find that inhibition of autophagic flux and, specifically, lysosomal

dysfunction is central to AL-LC cardiotoxicity and the development

of amyloid cardiomyopathy. We further demonstrate that restoration

of autophagic flux pharmacologically with rapamycin or genetically

through overexpression of TFEB protects against AL-LC cardiotoxic-

ity and may represent a novel therapeutic approach for treatment of

amyloid cardiomyopathy.

For our experiments, we utilized human Bence-Jones proteins to

study the signaling effects associated with toxic amyloid precursor

proteins. We found that light chain solubility is equivalent for AL-LC

and Con-LC at the 20 lg/ml concentration used in this study (Sup-

plementary Fig S5A). Additionally, under non-reducing native condi-

tions, we see that the majority of AL-LC and Con-LC proteins migrate

to a molecular weight consistent with a dimeric state (Supplemen-

tary Fig S5B), while under reducing conditions, these proteins are

found at a molecular weight consistent with monomeric state (Sup-

plementary Fig S5C). Further investigation is necessary to determine

whether the dimer form of the light chain proteins observed in our

study represents a true oligomeric state or merely a state of associa-

tion. Light chain has two subtypes, lambda and kappa. For our

experiments presented in this study, the lambda subtype of AL-LC

and kappa subtype of Con-LC proteins were used. Importantly, prior

work from our group has found no difference in the cardiotoxic

response for amyloidogenic kappa versus lambda light chain

proteins (Guan et al, 2013; Mishra et al, 2013). These observations

suggest that both kappa and lambda AL-LC proteins exert a similar

cardiotoxic response, whereas neither kappa nor lambda Con-LC

proteins resulted in cardiomyocyte toxicity or dysfunction, even at

tenfold higher concentrations in vitro (100 lg/ml) and in vivo

(1,000 lg/ml) than routinely used concentrations of AL-LC (Supple-

mentary Fig S6; Mishra et al, 2013).

Our previous studies have indicated that ROS generation is a

critical factor contributing to AL-LC-induced cellular pathology

where phenotypic rescue is seen with antioxidant administration

(Brenner et al, 2004; Shi et al, 2010). Data presented here expand

upon our previous work by demonstrating the mitochondrial origin

of the increased ROS. Mitochondrial dysfunction was found to be

closely associated with AL-LC-induced pathology, resulting from

impaired autophagic flux. Dysregulated autophagy has been impli-

cated as key in the pathology of a number of human diseases,

ranging from neurodegenerative to cardiovascular diseases, and

more recently, protein misfolding diseases including desmin-related

▸Figure 3. Restoration of autophagic flux via rapamycin attenuates AL-LC-induced cellular dysfunction and cell death in vivo.

A, B Immunoblot analysis of LC3-II and p62 expression in zebrafish lysate, 3 days post-injection of Con-LC or AL-LC (100 lg/ml). GAPDH was used as a loading control.
N = 5 (A); N = 4 (B). *P = 0.043, #P = 0.029.

C Transmission electron micrographs of cardiac tissue of Con-LC and AL-LC-injected zebrafish 3 days post-injection (5 days post-fertilization). Top panels show
changes in mitochondrial morphology and presence of double-membrane structures (autophagosomes) at 6,800× in AL-LC fish compared to Con-LC fish. Bottom
panel shows higher magnification of mitochondrial structure and autophagosomes. Scale bar = 500 nm. N = 3 per group.

D Zebrafish were treated with 10 nM rapamycin after receiving Con-LC or AL-LC injection. Immunoblot analysis was performed to measure p62 expression and
normalized to GAPDH as a loading control. Fifteen fish were homogenized per experiment. Quantitative analysis is shown for comparison below representative
blots. N = 3. *P = 0.011.

E Peak flow was measured in zebrafish embryos using color Doppler echocardiography. Representative color Doppler peak flow tracings of zebrafish 3 days post-
injection with or without treatment with rapamycin. Peak flow quantitation analysis is shown in the panel below. N = 5. *P = 0.001.

F Cell death was quantified in zebrafish 3 days post-injection with or without rapamycin treatment. Expression of active caspase 3 was measured using immunoblot.
15 zebrafish were homogenized per experiment. N = 4. *P = 0.029.

G Representative confocal images of hearts isolated from zebrafish 3 days post-injection with or without rapamycin treatment. Hearts are stained for TUNEL-positive
nuclei (red) and DAPI counterstain. TUNEL-positive nuclei are quantified and graphed in the right panel. Scale bar = 25 lm. N = 4 per group. *P = 6.7 × 10�4,
#P = 0.001.

H Kaplan–Meier analysis of zebrafish survival following injection of Con-LC or AL-LC in the absence or presence of rapamycin. Survival was monitored daily. The
survival of AL-LC-injected fish was significantly prolonged in the presence of rapamycin. N = 25 per group. *P = 0.0001.

Source data are available online for this figure.

EMBO Molecular Medicine Vol 6 | No 11 | 2014 ª 2014 The Authors

EMBO Molecular Medicine Autophagy and AL amyloid cardiomyopathy Jian Guan et al

1498



A B C

D

G H

E F

Figure 3.

ª 2014 The Authors EMBO Molecular Medicine Vol 6 | No 11 | 2014

Jian Guan et al Autophagy and AL amyloid cardiomyopathy EMBO Molecular Medicine

1499



cardiomyopathy (Wong & Cuervo, 2010; Bhuiyan et al, 2013).

Autophagy is a dynamic process that starts with the formation of a

double-membrane autophagosome complex that engulfs and then

degrades cellular waste products, including organelles such as

defective mitochondria. Thus, defects in either formation or clear-

ance of autophagosomes could result in the observed increased

levels of LC3-II expression and the formation of double-membrane

structures induced by AL-LC. Investigation of each step of the auto-

phagic flux following AL-LC exposure was therefore required to

identify the exact point of dysregulation in the autophagy pathway

(Mizushima et al, 2010). Through use of lysosomal inhibitors, we

found that formation of autophagosomes, as measured by LC3-II

levels in AL-LC-exposed cardiomyocytes, was similar to control

treated cells, indicating that the primary defect in AL-LC exposure

is in autophagosome clearance. The autophagic substrate, p62, also

known as sequestosome 1 (SQSTM1), is a scaffold protein that

binds ubiquitinated protein leading to the formation of autophago-

somes for subsequent degradation (Kubli & Gustafsson, 2012). We

not only found increased p62 accumulation in our in vitro and

in vivo experimental models in response to AL-LC, but also obser-

ved an increase in p62 levels in explanted human hearts from

AL cardiomyopathy patients, further supporting a decrease in auto-

phagic clearance as the cause for impaired autophagic flux. It is

noteworthy that the increased p62 protein levels most likely

resulted from protein accumulation and not increased transcription,

as we find that p62 mRNA levels are not increased in AL cardiomy-

opathy patient hearts compared to control hearts (Supplementary

Fig S7).

Recent studies have reported beneficial effects of rapamycin

through autophagy activation in a number of experimental disease

models (Bove et al, 2011; Cortes et al, 2012; Cai & Yan, 2013).

Restoration of autophagic flux by rapamycin in our system was

associated with protection against AL-LC-induced pathology. The

beneficial effects of rapamycin were negated with chloroquine,

which neutralizes lysosomal pH thereby inhibiting autophagosome

clearance, supporting the conclusion that the mechanism of action

of rapamycin was primarily through improvement of clearance.

Lysosomal function plays a critical role in the clearance of auto-

phagosomes (Eskelinen & Saftig, 2009), and dysfunction or defi-

ciency of the lysosome has been implicated in other amyloid-related

diseases, such as Parkinson’s disease (Dehay et al, 2010). In our

disease model, we observed AL-LC-induced loss of lysosomal acid-

ity, with associated downregulation of lysosomal genes and ATPases

required for maintenance of pH, as well as decreased TFEB, a criti-

cal transcriptional regulator of lysosomes (Settembre et al, 2011;

Decressac et al, 2013; Pastore et al, 2013). Furthermore, rapamycin

administration resulted in a decrease in autophagosome accumula-

tion and attenuated dopaminergic neuronal cell death, both of

which were associated with increased numbers of functional lyso-

somes (Dehay et al, 2010). In our systems, genetic overexpression

of TFEB protected against AL-LC cardiotoxicity in vitro and in vivo

and prolonged survival in our zebrafish model. Notably, rapamycin

treatment restored TFEB expression to control levels in AL-LC-

treated cardiomyocytes, further confirming that its mechanism of

action was through targeting lysosomal function.

In summary, the studies presented here show that lysosomal-

dependent autophagic dysregulation governs the pathogenesis of

AL-LC-induced cellular dysfunction and death. The dysregulation of

autophagy leads to the accumulation of depolarized mitochondria,

subsequent generation of ROS, and eventual cellular dysfunction

and cell death. The therapeutic potential of autophagy-related

targets was evident following rescue of AL-LC-induced mortality

in vivo not only using rapamycin, but also following transient over-

expression of TFEB. Our temporal studies suggest that lysosomal

insufficiency is among the earliest events that occur in response to

AL-LC, and is subsequently followed by dysregulation of autophagy,

mitochondrial dysfunction, ROS production, and ultimately overt

cellular death and dysfunction. In conjunction with the evidence of

profound lysosomal-dependent dysregulation of autophagy in

patients with AL amyloid cardiomyopathy, these studies highlight

the potential of targeting lysosomal-mediated autophagy as the

treatment of the AL amyloid cardiomyopathy patients.

▸Figure 4. Lysosomal dysfunction contributes to AL-LC-induced dysregulation of autophagy and consequent cellular dysfunction and death in vitro and in vivo.

A Lysosomal labeling using LysoTracker red in cardiomyocytes following exposure to vehicle, Con-LC or AL-LC is shown (top panels), with corresponding bright field
images shown below. Quantitation of fluorescent signal is shown in the graph on the right. Scale bar = 50 lm. N = 6. *P = 0.009.

B Alterations in lysosomal pH were measured using LysoSensor in cardiomyocytes treated with vehicle, Con-LC or AL-LC. pH changes were measured by calculating the
ratio between green (basic) and red (acidic) LysoSensor signal. Quantitation is shown on the right indicating loss of lysosomal acidity in AL-LC treated
cardiomyocytes. Scale bar = 10 lm. N = 8. *P = 0.038.

C Quantitative PCR analysis of cardiomyocytes following 24-h exposure to vehicle, Con-LC or AL-LC reveals changes in mRNA encoding the lysosomal gene products
cathepsin D and vacuolar ATPase subunits 1 and 2. All three targets were significantly downregulated in the AL-LC group. N = 3. *P = 0.015, #P = 0.002,
**P = 1.9 × 10�4.

D Quantitative PCR analysis of cardiomyocytes following 24-h exposure to vehicle, Con-LC and AL-LC reveals decreased mRNA level of the lysosomal transcriptional
factor TFEB. N = 4. *P = 0.003.

E Protein expression of TFEB in cardiomyocytes was measured using immunoblot analysis following 24-h exposure to vehicle, Con-LC or AL-LC. AL-LC-induced
downregulation of TFEB protein expression was prevented by rapamycin treatment. N = 3. *P = 0.043, #P = 0.032.

F TFEB was overexpressed in cardiomyocytes using adenovirus, and adenoviral GFP overexpression was used as a control. Contractile function was measured following
exposure to vehicle or AL-LC. In cells overexpressing TFEB, AL-LC-induced decreased cell shortening was rescued compared to GFP-expressing myocytes. N = 5.
*P = 0.002.

G TFEB was overexpressed in cardiomyocytes using adenovirus. Adeno-GFP was used as a control. Calcium transient amplitude was measured following exposure to
either vehicle or AL-LC. In cells overexpressing TFEB, AL-LC-induced decrease in calcium amplitude was rescued compared to control groups. N = 5. *P = 0.002.

H Hearts were isolated 2 days post-injection of vehicle, Con-LC or AL-LC from zebrafish overexpressing TFEB, or control mRNA. Hearts were stained for TUNEL-labeled
nuclei with a DAPI counterstain. Cell death was calculated as a percent of TUNEL-positive nuclei to total cell number. Scale bar = 20 lm. N = 3–5 per group.
*P = 0.003, #P = 0.002.

I Kaplan–Meier analysis of survival following injection of Con-LC or AL-LC in zebrafish overexpressing control or TFEB mRNA. Survival was monitored daily. During the
time course of transient overexpression of TFEB, AL-LC-induced mortality was rescued significantly. N = 25 per group. *P = 0.0003.
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Figure 5. Temporal analysis of AL-LC-induced toxicity and dysregulation of autophagy.

A Lysosomal labeling in cardiomyocytes following exposure to vehicle, Con-LC or AL-LC using LysoTracker red at 3, 6 and 12 h post-AL-LC exposure. Quantitation of
fluorescent signal is shown in the graph. N = 3. *P = 0.011, #P = 0.032, **P = 0.029.

B Dysregulation of autophagy following AL-LC exposure was monitored using a GFP-LC3 cleavage assay. Degradation of the GFP-LC3 fusion protein was monitored via
immunoblotting against GFP antibody at 2, 6, and 12 h post-AL-LC exposure. A significant delay in the degradation of GFP-LC fusion protein was seen by
accumulation of GFP-LC fusion protein in cardiomyocytes starting 6 h following exposure to AL-LC. N = 5. *P = 0.003, #P = 0.038.

C Mitochondrial membrane potential was measured using TMRE fluorescent dye in cardiomyocytes 6, 12 and 24 h following treatment with vehicle or AL-LC. TMRE
fluorescence signal was quantified and summarized in the graph. AL-LC exposure resulted in loss of mitochondrial membrane potential compared to the other groups
at 12 and 24 h post-AL-LC exposure. N = 3. *P = 0.020, #P = 0.029.

D Using fluorescent indicator DCFDA, ROS was measured in isolated cardiomyocytes treated with vehicle, Con-LC and AL-LC for 3, 12 and 24 h. Quantitative analysis is
summarized in the graph. AL-LC but not Con-LC increased ROS only at 24 h following AL-LC exposure. N = 3. *P = 0.004.

E Schematic illustration of temporal events involved in AL-LC-induced pathology.

Source data are available online for this figure.
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Materials and Methods

Human tissues and light chain protein

All procedures related to human light chain protein and heart tissues

were reviewed and approved by the Institution Review Board (IRB)

at Boston University School of Medicine and Massachusetts General

Hospital. Bence-Jones proteins, including amyloidogenic LC isolated

from AL amyloid patients (AL-LC) and non-amyloidogenic LC

isolated from non-amyloidosis multiple myeloma patients (Con-LC),

were obtained from urine purification in collaboration with Boston

University Amyloidosis Center (Liao et al, 2001; Connors et al,

2007). Immunoblotting was used to determine the purity of LC

proteins as described previously (Connors et al, 2007). Additional

information regarding LC protein is listed in Supplementary Table

S1. Explanted hearts of patients with AL amyloid cardiomyopathy

were collected at the Massachusetts General Hospital. Non-disease

control human hearts were purchased from the National Disease

Research Interchange. Additional information regarding human

samples is listed in Supplementary Table S2.

Animal care

All animal (rat and zebrafish) procedures were reviewed and

approved by the Institutional Animal Care and Use Committee at

Harvard Medical School. Rats and zebrafish were housed in Associa-

tion for Assessment and Accreditation of Laboratory Animal Care

(AAALC)-accredited animal care facilities under a 12-h light–dark

cycle and were fed with laboratory chow. Adult rats for cardiomyo-

cyte isolation were purchased from Charles River Laboratory

(male Wistar rats, 180–220 g, catalog #003). Neonatal rats for

cardiomyocyte isolation were purchased from Charles River

Laboratory (Wistar rats, p1-p2, catalog #003). Wild-type zebrafish

were purchased from Ekkwill Waterlife Resources (Ruskin). Care

A B

C D

Figure 6. Lysosomal dysfunction and autophagic dysregulation in AL amyloid cardiomyopathy.

A Transmission electron micrographs of cardiac tissue isolated from donor (top panels) or AL cardiomyopathy patients (bottom panels). Disruption in muscle
organization, abnormal mitochondria and double-membrane structures (autophagosomes) are prevalent in heart tissue of AL amyloid cardiomyopathy patients
and absent in tissue from healthy donors. Scale bar = 500 nm.

B–D Immunoblot analysis for expression of autophagic markers LC3-II (B) and p62 (C) as well as TFEB (D) protein expression in heart tissue isolated from donor or AL
cardiomyopathy patients. Immunoblotting revealed increased LC3-II and p62 expression, as well as decreased TFEB protein expression in AL amyloid
cardiomyopathy patients compared to healthy donors. N = 5 (B), N = 6 (C and D). *P = 0.005 (B and C), *P = 0.012 (D).

Source data are available online for this figure.
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and breeding of zebrafish were conducted as described previously

(Guan et al, 2013; Mishra et al, 2013).

Chemicals and reagents

General chemicals and reagents were obtained from Sigma unless

otherwise specified. Mito-TEMPO was from Santa Cruz Biotechnol-

ogy. Low-glucose DMEM with phenol red or without phenol red,

TMRE, LysoTracker Red, LysoSensor Blue/Yellow, DCFDA and

Laminin were acquired from Invitrogen. Rapamycin was from Cell

Signaling Technology. Trypsin and Collagenase were purchased

from Willington. Antibodies were obtained from Santa Cruz Biotech-

nology (TFEB), Cell signaling Technology (total and phosphoryla-

ted S6 Kinase, COX4), MBL (LC3), R&D Systems (GAPDH), Sigma

(b-actin), Abcam (active caspase 3) and Abnovo (p62). Secondary

antibodies for immunohistochemistry (donkey anti-mouse antibody-

Alexa Fluor 555 and donkey anti-rabbit antibody-Alexa Fluor 488)

were from Invitrogen. Adenovirus purification kit, ATPlite kit and

TUNEL kit were purchased from Adenopure, Perkin Elmer and

Roche, respectively. Full-length human TFEB-GFP adenovirus was

purchased from Vector BioLabs, and adeno-GFP virus was used as a

control. MOIs of the two adenovirus were adjusted to infect the adult

cardiomyocytes for achieving an equal expression level of GFP as

described previously. Experiments were started 24 h following

adenovirus infection. Contractile function and intracellular calcium

measurements were performed 24 h following AL-LC exposure.

Cardiomyocyte isolation and culture

As previously described (Jain et al, 2003), rat ventricular cardiomyo-

cytes were isolated from adult male Wistar rats using a collagenase-

based enzymatic digestion method. Cardiomyocytes were treated

with vehicle (ultrapure water), 20 lg/ml of Con-LC or AL-LC at

designated time points as described in the Results section. Neonatal

rat cardiomyocytes were isolated from 1- to 2-day-old Wistar rats

(Charles River Laboratory #003) as previously described (Guan et al,

2013).

Cell contractility measurement and intracellular
calcium measurements

Cellular contractile function was measured in cultured adult ventricu-

lar cardiomyocytes using video edge detection, and intracellular

calcium levels were determined with calcium-sensitive fluorescent dye

Fura-2, as described previously (Shi et al, 2010). Following treatment

or addition of light chain protein, cardiomyocytes were perfused with

1.2 mmol/l Ca2+ Tyrode’s buffer at 37°C under pacing at 5 Hz.

Percentage cellular shortening was calculated as the ratio of the differ-

ence between systolic and diastolic cell length over diastolic cell

length. Calcium transient amplitude was calculated as the difference in

the intracellular calcium levels between systolic and diastolic phases.

4–6 cells were measured per biological replicate, and three biological

replicates were performed and grouped for statistical analysis.

Cell death assays

Cultured cardiomyocytes were washed with PBS and immediat-

ely fixed in 4% paraformaldehyde. Cells were permeabilized in

pre-chilled methanol at�20°C for 30 min and incubated with TUNEL

reaction mixture (Roche) in a moisture chamber for 1 h at 37°C.

Slides were washedwith PBS for three times andmounted in anti-fade

medium containing DAPI (Vectorlabs). For detection of cell death in

vivo, individual hearts were dissected from zebrafish in Tyrode’s

solution containing 3% BSA. Hearts were transferred to a microwell

plate and fixed in 4% paraformaldehyde for 20 min. Hearts were

rinsed in PBS and permeabilized overnight in PBS with 0.1% Tween

at 4°C. Hearts were washed three times in PBS, and cell death was

detected using TUNEL reaction mixture (Roche) in a moisture cham-

ber for 1 h at 37°C. Hearts were washed with PBS and placed directly

into mounting medium containing DAPI. For cardiomyocytes, images

were acquired with excitation wavelengths of 405 and 488 nm,

and 4–5 pictures were taken from each slide using Axiovision

fluorescence microscope (Zeiss). For whole fish hearts, images were

taken with excitation wavelengths of 405 and 555 nm, and images

were taken using LSM700 confocal microscopy (Zeiss). Percent of

apoptotic cell death was calculated as TUNEL-positive nuclei divided

by total nuclei. TUNEL-positive nuclei were manually counted, and

the total nuclei were counted using ImageJ software (NIH). All of the

counting was performed in a blinded fashion. Expression of active

caspase 3 for both cell lysates and zebrafish lysate was determined

using immunoblotting against active caspase 3.

RNA isolation and quantitative PCR

To measure gene expression in mRNA level, total RNA was isolated

using Trizol (Invitrogen) extraction method. Prior to synthesize

cDNA, DNAase treatment was performed subsequently to remove

the residual DNA contamination (Turbo DNAase, Ambion). iScriptTM

cDNA Synthesis Kit (Bio-Rad) was used for first-strand cDNA

synthesis. Quantitative PCR was performed using standard curve

method using the iCycler PCR (Bio-Rad). The primers are as follows:

for rat cardiomyocytes, TFEB forward primer: CTCGAAGTCGGGG

AACTAGG, reverse primer: CTGCAGTCGAGGGAAGACAG; GAPDH

forward primer: GGTGATGCTGGTGCTGAGTA, reverse primer:

TTGCTGACAATCTTGAGGGA; cathepsin D (Cts D) forward primer:

GTGGCTTCATGGGGATGGAC, reverse primer: GGAGCAAGTTA

GAGTGTGGCA; vacuolar ATPase subunit 1 (VOA1) forward primer:

TCTCCACCCATTCAGAGGAC, reverse primer: CCTTCCATGATCAG

CAGGAT; vacuolar ATPase subunit 2 (VOA2) forward primer: CAG

TTCCGAGACCTCAACCA, reverse primer: GTTTAACAGGTGGTGC

GGGA; for fish tissue, TFEB forward primer: GCCACGAGAACGA

GATGGAT, reverse primer: GCAGATCCAGACTACCGGGG; and

EF1a forward primer: CTGGAGGCCAGCTCAAACATGG, EF1a
reverse primer: ACTCGTGGTGCATCTCAACAGACT.

Immunohistochemistry

Following treatment, adult cardiomyocytes were washed twice with

1× PBS and then fixed/permeabilized with acetone/methanol (1:2)

solution at �20°C for 20 min. Incubation with 3% BSA solution for

1 h at room temperature was performed to minimize non-specific

binding. Cells were then incubated with two primary antibodies

(anti-p62 [1:100] and COX4 [1:1,000]) at 4°C for 18 h followed by

subsequent incubation with secondary antibodies (donkey anti-

mouse Alexa Fluor 555 [1:300] and donkey anti-rabbit Alexa Fluor

488 [1:300]) for 1 h at 37°C to detect p62 and COX4, respectively.
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After final washing with PBS, the slides were mounted with VECTA-

SHIELD mounting media (Vector Lab). Zeiss LSM700 fluorescence

confocal microscope was used to visualize p62 (Ex/Em: 550/

600 nm) and COX4 (Ex/Em: 488/525 nm) with 63× lens. DAPI was

used to stain for the nuclei.

Immunoblot

For rat cardiomyocytes, protein was extracted using cell lysis buffer

(Cell Signaling) with 1 mM PMSF (Sigma) and then subjected to

sonication. The protein concentration was determined by Dc

protein assay (Bio-Rad). For zebrafish, 15 embryos were suspended

directly in 50-ll SDS loading buffer and homogenized using a

tissue homogenizer (TissueLyser II, Qiagen). Following homogeni-

zation, the samples were centrifuged and total protein homogen-

ates were obtained. 30 lg of total protein or 18 ll of fish protein

lysate was loaded onto Criterion XT bis-tris precast gels (4–12%)

(Invitrogen) or PAGEr Gold precast gels (4–20%) (Lonza) for elec-

trophoresis. Protein was electrotransferred to a PVDF membrane

(Millipore) at 30 volts for 16–18 h at 4°C. After blocking in 5%

BSA in PBS, proteins of interest were detected by incubation with

appropriate primary antibodies overnight at 4°C. After washing,

blots were incubated with corresponding secondary antibodies.

Odyssey infrared scanner (Li-Cor) was used to determine the infra-

red fluorescent signal, and GAPDH was used as a reference gene

for normalization.

Mitochondrial membrane potential and ATP measurement

Following Con-LC, AL-LC (20 lg/ml) or vehicle administration for

designated number of hours, cultured cardiomyocytes were incu-

bated with cell permeable, mitochondrial membrane potential-

sensitive fluorophore TMRE (Invitrogen) at the concentration of

10 nM for 30 min. Cardiomyocytes were then washed with warm

PBS 2 times. TMRE fluorescence was acquired with excitation

wavelengths of 555 nm, and 4–5 pictures were taken from each

dish using LSM700 confocal microscopy (Zeiss). Mean fluorescence

intensity of individual cardiomyocytes was determined per picture

with ImageJ software (NIH). Cellular ATP level was determined

with ATPlite kit according to the manufacture’s manual. Briefly,

cardiomyocytes were cultured on a 12-well plate. Following 24-h

treatment of LCs, warm PBS was used to wash cells gently. 75 ll of
PBS was added to each well, followed by 75 ll of cell lysis buffer.

Plate was subjected to 5-min shaking at 700 r.p.m. to break up the

plasma membrane. 150 ll of ATP luminescent reaction buffer with

substrate was added into each well, and the luminescence signal

was measured with a SpectraMax M5 Microplate Reader (Molecular

Device).

ROS measurement

Following Con-LC or AL-LC (20 lg/ml) or vehicle administration

for designated number of hours, cultured cardiomyocytes were

incubated with cell permeable, redox-sensitive fluorophore DCFDA

(Invitrogen) at the concentration of 20 lM for 30 min. Cardio-

myocytes were then washed with warm PBS 2 times. Cell images

were acquired using LSM700 confocal microscopy (excitation

wavelength at 488 nm) and analyzed with SigmaScan Pro. For

determination of mitochondrial-derived ROS, cardiomyocytes were

pre-treated with Mito-TEMPO (Santa Cruz Biotech), a mitochondrial-

specific ROS scavenger, at a concentration of 100 nM for 45 min

prior to experimental manipulation.

Autophagic flux measurement

For autophagosome clearance, adult rat cardiomyocytes were

treated with either Con-LC or AL-LC (20 lg/ml) or vehicle for 24 h.

Autophagy-specific substrate p62 was measured with immunoblot-

ting. For autophagosome generation rate, adult rat cardiomyocytes

were treated with either AL-LC (20 lg/ml) or vehicle for 48 h in the

presence or absence of lysosomal inhibitors (E64d and Pepstatin A

at the concentration of 5 lg/ml) (Hamacher-Brady et al, 2006).

LC3-II levels were then measured with immunoblotting.

GFP-LC3 cleavage assay

Neonatal cardiomyocytes were infected with GFP-LC3 adenovirus.

Twenty-four hours following adenoviral infection, neonatal cardio-

myocytes were exposed to either vehicle, Con-LC or AL-LC for 2, 6

or 12 h. Following 1× PBS wash, cells were manually harvested

using a cell lifter. Protein homogenate from harvested lysed cells are

then subjected to immunoblotting for GFP. GFP antibody was used

to detect the presence of GFP-LC3 fusion protein. Degradation of the

fusion protein is reduced under conditions when autophagic flux is

inhibited (Ni et al, 2011).

LysoTracker and LysoSensor staining

Following designated hour treatment with vehicle, Con-LC and

AL-LC (20 lg/ml), cultured cardiomyocytes were incubated with

cell permeable, lysosomal-specific probe LysoTracker (Invitrogen)

at a concentration of 100 nM for 30 min. Cardiomyocytes were

washed twice with warm PBS. Cell images were acquired using

LSM700 confocal microscopy (excitation wavelength at 555 nm)

and analyzed with ImageJ software. For determination of lysosomal

pH, cardiomyocytes were incubated with LysoSensor Blue/Yellow

(Invitrogen) at a concentration of 1 lM for 3 min prior to measure-

ment using LSM710 two-photon confocal microscopy (excitation

wavelength was 720 nm, and emission wavelengths were collected

from 400 to 461 nm for the blue emission and 510 to 630 nm for the

yellow emission). Images were analyzed using imageJ soft-

ware. Green fluorescence signal (blue emission) represents basic

conditions, and red fluorescence signal (yellow emission) represents

acidic conditions. Pseudocoloring (the ratio of green/red) was done

to represent lysosomal pH.

Electron microscopy

1-mm3 cubes of human heart samples from either non-failing

control or AL amyloid cardiomyopathy patients, or whole zebra-

fish embryos that had been injected with Con-LC or AL-LC, were

fixed with 2.5% glutaraldehyde overnight at 4° and then embed-

ded in epoxy resins. Ultrathin sections (80 nm) were stained with

uranyl acetate/lead citrate and then examined under the Tecnai

G² electron microscope (FEI Inc) in Harvard Medical School EM

core facility.
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Assessment of cardiac function in zebrafish

Either Con-LC or AL-LC (100 lg/ml) was introduced into zebrafish

circulation via venous injection as previously described. Following

randomization, fish were treated with vehicle or rapamycin [10 nM]

(Tobin & Beales, 2008). 5dpf zebrafish were embedded in 4% low-

melting agarose (Invitrogen) made with E3 water. E3 water was

added to a level of 2 mm above the agarose. Color Doppler echocar-

diography was performed using MS700 probe (Vevo2100, Visual-

Sonics) to determine the peak aortic flow velocity at 50 MHz. The

color Doppler gate was placed on the dorsal edge of ventricle. The

maximal flow velocity of each fish was acquired in a blinded fash-

ion. Per each animal, the acquisition part starting at embedding was

kept within 3 min to ensure fish health during time of measure-

ment. 6–8 fish were examined for each group.

Transient TFEB overexpression zebrafish model

A pair of primers was designed to amplify fish TFEB mRNA from

whole fish mRNA samples: upstream primer: ATTTAGGTGACAC

TATAGAAATGTCGTCACGCATCGGCCT; downstream primer: CCG

CTCGAGTCACTGTATATC. mMESSAGE mMACHINE Kit (Invitro-

gen) was used to synthesize zebrafish TFEB mRNA. Reverse TFEB

mRNA was synthesized for control. The quality/quantity of mRNA

was determined by Nanodrop spectrometer (Thermo Scientific).

20 pg of mRNA was injected into zebrafish embryos at single cell

stage. AL-LC was introduced into fish circulation via venous injec-

tion 2 days post-fertilization. Cardiac cell death was determined at

4dpf. Fish survival was monitored until day 7 post-fertilization.

Statistical analysis

All data are shown as mean � standard error. Statistical differences

between mean values for two groups were evaluated by Student’s

t-test using GraphPad Prism software and confirmed using Microsoft

Excel. Individual P-values are denoted within the figure legends.

P < 0.05 was considered as significant.

Supplementary information for this article is available online:

http://embomolmed.embopress.org
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