66 research outputs found

    Inflammatory dendritic cells in mice and humans.

    Get PDF
    International audienceDendritic cells (DCs) are a heterogeneous population of professional antigen-presenting cells. Several murine DC subsets have been identified that differ in their phenotype and functional properties. In the steady state, DC precursors originating from the bone marrow give rise to lymphoid-organ-resident DCs and to migratory tissue DCs. During inflammation, an additional DC subset has been described, so-called inflammatory DCs (infDCs), which differentiate from monocytes recruited to the site of inflammation. Here, we review recent work on the development and functions of murine infDCs. We also examine the criteria that define infDCs. Finally, we discuss the characterization of human infDCs and their potential role in inflammatory diseases

    Crosspresentation by dendritic cells,”

    Get PDF
    MHC class I-loading complex A series of endoplasmic reticulum chaperone proteins that stabilize empty MHC class I molecules and control the loading of high-affinity peptides onto MHC class I molecules. Cross-presentation by dendritic cells Abstract | The presentation of exogenous antigens on MHC class I molecules, known as cross-presentation, is essential for the initiation of CD8 + T cell responses. In vivo, cross-presentation is mainly carried out by specific dendritic cell (DC) subsets through an adaptation of their endocytic and phagocytic pathways. Here, we summarize recent advances in our understanding of the intracellular mechanisms of cross-presentation and discuss its role in immunity and tolerance in the context of specialization between DC subsets. Finally, we review current strategies to use cross-presentation for immunotherapy

    Extracellular Acidosis and mTOR Inhibition Drive the Differentiation of Human Monocyte-Derived Dendritic Cells

    Get PDF
    During inflammation, recruited monocytes can differentiate either into macrophages or dendritic cells (DCs); however, little is known about the environmental factors that determine this cell fate decision. Low extracellular pH is a hallmark of a variety of inflammatory processes and solid tumors. Here, we report that low pH dramatically promotes the differentiation of monocytes into DCs (monocyte-derived DCs [mo-DCs]). This process is associated with a reduction in glucose consumption and lactate production, the upregulation of mitochondrial respiratory chain genes, and the inhibition of mTORC1 activity. Interestingly, we also find that both serum starvation and pharmacological inhibition of mTORC1 markedly promote the differentiation of mo-DCs. Our study contributes to better understanding the mechanisms that govern the differentiation of monocytes into DCs and reveals the role of both extracellular pH and mTORC1 as master regulators of monocyte cell fate.Fil: Erra Díaz, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Ochoa, Andrea Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Merlotti Ippólito, Antonela. PSL Research University; Francia. Inserm; FranciaFil: Dantas, Ezequiel Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Mazzitelli, Ignacio Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Gonzalez Polo, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Sabatte, Juan Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Amigorena, Sebastián. Psl Research University; Francia. Inserm; FranciaFil: Segura, Elodie. Psl Research University; Francia. Inserm; FranciaFil: Geffner, Jorge Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; Argentin

    Simultaneous detection and quantification of angiotensin I, II, 1-7 and 1-9 by LC-MS/MS in human plasma

    Full text link
    peer reviewedRecent studies showed that angiotensin-converting 2 (ACE2) is used by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a cellular entry receptor. SARS-CoV-2 causes down regulation of ACE2 leading to renin-angiotensin-aldosterone system (RAAS) major imbalance. This is an essential element of unfavourable evolution in patients with COVID-19. With lower level of ACE2, cleavage of And I and And II is decrease and therefore, And 1-7 and And 1-9 levels are decreased. The development of a quantitative method for these angiotensins is particularly interesting in the context of the prognosis/follow-up of patients with COVID-19. Based on this, this work aims at assessing angiotensins profile variations occurring over time with patients COVID-19 + using a LC-MS/MS method. In this project, plasma samples are prepared with an microelution MAX plate before injection on a Vexera X2 UPLC (Shimadzu Corporation, Kyoto, Japan) coupled to a QT5500 mass spectrometer (Scion, CA, USA) fitted with an IonDriveTMTurbo V ion source and using electro spray ionisation in positive mode. The mobile phase are composed of water (+0,4% formic acid) and of acetonitrile (+0,4% formic acid)

    Iohexol quantitation and possible degradation kinetics in human urine using mass spectrometry coupled to liquid chromatography (LC)

    Full text link
    peer reviewedIohexol is a well-known marker used to evaluate glomerular filtration rate (GFR) which is one indicator of kidney function. This GFR in often calculated using Iohexol intensity decay calculated using LC-MS/MS approaches on human plasma and urines. In these approaches, urines or plasma are taken from patients who were administered Iohexol at different timepoints and Iohexol is quantified at each time using one MRM approach. Once those value obtained, kinetics can be performed and GFR is calculated. However, some discrepancies can occur between urine and plasma results from the same patient and no study clearly explained this. Based on this, this work aims at assessing molecule profile variations occurring over time with patients that took Iohexol using LC coupled with high resolution mass spectrometry. In this project, urine samples are taken at given timepoints from patients who received Iohexol. The samples are first centrifuged, and the supernatant is diluted 100 times with water before injection in a NanoACQUITY UPLC system coupled with a SYNAPT XS instrument operating in positive ion mode. The mobile phases are composed of water (+0.1% formic acid) and of acetonitrile (+0.1% formic acid). Standard samples (commercial Iohexol drug) are also analyzed as quality control. The Iohexol LC-MS/MS method on a triple quadripole instrument has successfully been implemented on the SYNAPT XS – NanoACQUITY UPLC system. The first results on different patient urines show the presence of other peaks that Iohexol in patient samples. Interestingly, those peaks are not present in standards and in urines of patients who did not receive the drug. Investigation of all mass spectra is in progress and these results open the possibility for a large screening over time. Comparison with data obtained using LC-MS/MS is also in progress and the next step is the comparison with data obtained on plasma samples

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Ubiquitin-like protein 3 (UBL3) is required for MARCH ubiquitination of major histocompatibility complex class II and CD86

    Get PDF
    The MARCH E3 ubiquitin (Ub) ligase MARCH1 regulates trafficking of major histocompatibility complex class II (MHC II) and CD86, molecules of critical importance to immunity. Here we show, using a genome-wide CRISPR knockout screen, that ubiquitin-like protein 3 (UBL3) is a necessary component of ubiquitination-mediated trafficking of these molecules in mice and in humans. Ubl3-deficient mice have elevated MHC II and CD86 expression on the surface of professional and atypical antigen presenting cells. UBL3 also regulates MHC II and CD86 in human dendritic cells (DCs) and macrophages. UBL3 impacts ubiquitination of MARCH1 substrates, a mechanism that requires UBL3 plasma membrane anchoring via prenylation. Loss of UBL3 alters adaptive immunity with impaired development of thymic regulatory T cells, loss of conventional type 1 DCs, increased number of trogocytic marginal zone B cells, and defective in vivo MHC II and MHC I antigen presentation. In summary, we identify UBL3 as a conserved, critical factor in MARCH1-mediated ubiquitination with important roles in immune responses

    Comparative Analysis of Acinetobacters: Three Genomes for Three Lifestyles

    Get PDF
    Acinetobacter baumannii is the source of numerous nosocomial infections in humans and therefore deserves close attention as multidrug or even pandrug resistant strains are increasingly being identified worldwide. Here we report the comparison of two newly sequenced genomes of A. baumannii. The human isolate A. baumannii AYE is multidrug resistant whereas strain SDF, which was isolated from body lice, is antibiotic susceptible. As reference for comparison in this analysis, the genome of the soil-living bacterium A. baylyi strain ADP1 was used. The most interesting dissimilarities we observed were that i) whereas strain AYE and A. baylyi genomes harbored very few Insertion Sequence elements which could promote expression of downstream genes, strain SDF sequence contains several hundred of them that have played a crucial role in its genome reduction (gene disruptions and simple DNA loss); ii) strain SDF has low catabolic capacities compared to strain AYE. Interestingly, the latter has even higher catabolic capacities than A. baylyi which has already been reported as a very nutritionally versatile organism. This metabolic performance could explain the persistence of A. baumannii nosocomial strains in environments where nutrients are scarce; iii) several processes known to play a key role during host infection (biofilm formation, iron uptake, quorum sensing, virulence factors) were either different or absent, the best example of which is iron uptake. Indeed, strain AYE and A. baylyi use siderophore-based systems to scavenge iron from the environment whereas strain SDF uses an alternate system similar to the Haem Acquisition System (HAS). Taken together, all these observations suggest that the genome contents of the 3 Acinetobacters compared are partly shaped by life in distinct ecological niches: human (and more largely hospital environment), louse, soil

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
    corecore