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SUMMARY
During inflammation, recruited monocytes can differentiate either into macrophages or dendritic cells (DCs);
however, little is known about the environmental factors that determine this cell fate decision. Low extracellular
pH is a hallmark of a variety of inflammatory processes and solid tumors. Here, we report that low pH dramat-
ically promotes the differentiation of monocytes into DCs (monocyte-derived DCs [mo-DCs]). This process is
associated with a reduction in glucose consumption and lactate production, the upregulation of mitochondrial
respiratory chain genes, and the inhibition of mTORC1 activity. Interestingly, we also find that both serum star-
vation and pharmacological inhibition of mTORC1markedly promote the differentiation of mo-DCs. Our study
contributes to better understanding themechanisms that govern the differentiation ofmonocytes into DCs and
reveals the role of both extracellular pH and mTORC1 as master regulators of monocyte cell fate.
INTRODUCTION

Dendritic cells (DCs) play a critical role in the initiation of the

adaptive immune response and the maintenance of self-toler-

ance (Banchereau and Steinman, 1998; Hawiger et al., 2001).

Three major subsets of DCs have been defined in the steady

state: plasmacytoid DCs (pDCs), type 1 conventional DCs

(cDC1), and type 2 cDCs (Geissmann et al., 2010; Guilliams

et al., 2014; Merad et al., 2013; Mildner and Jung, 2014). Inflam-

matory processes are associated with the development of an

additional DC subset, so-called monocyte-derived DCs (mo-

DCs) (Boltjes and van Wijk, 2014; Cheong et al., 2010; Greter

et al., 2012; Segura and Amigorena, 2013; Shortman and Naik,

2007). mo-DCs have also been described in steady-state condi-

tions (Richter et al., 2018; Tamoutounour et al., 2013; Coillard

and Segura, 2019).

Low pH is a hallmark of a variety of inflammatory processes in

peripheral tissues. Values of extracellular pH as low as 6.0 have

been described in the course of inflammation triggered by bac-

terial infections (Abbot et al., 1990; Bryant et al., 1980; Dubos,

1955; Edlow and Sheldon, 1971; Simmen et al., 1994; Simmen

and Blaser, 1993) and also in the context of autoimmune dis-

eases (Geborek et al., 1989; Månsson et al., 1990). Moreover,

extracellular acidosis (range, 5.8 to 7.4) is a hallmark of solid tu-

mors as well as a major determinant of tumor progression

(Ashby, 1966; Corbet and Feron, 2017; Helmlinger et al., 1997).

Little is known about the factors that determine whether

monocytes will differentiate into macrophages or DCs. Using hu-
This is an open access article und
man monocytes, we report here that low pH and mTORC1 inhi-

bition markedly promote the differentiation of mo-DCs.

RESULTS

LowpHSkews theDifferentiation ofMonocytes intoDCs
Goudot et al. (2017) have shown that culturing monocytes with

macrophage colony stimulating factor (M-CSF), interleukin-4

(IL-4), and tumor necrosis factor alpha (TNF-a) yields a heteroge-

neous population of cells, including a subpopulation of mo-DCs

(CD1a+CD16� cells). Using this approach, we analyzed the influ-

ence exerted by extracellular pH on the differentiation of

mo-DCs. Figure 1A shows that pH 6.5 markedly promoted the

differentiation of monocytes into DCs (CD1a+CD16� cells).

Quantification of the absolute number of cells in each cell popu-

lation (Figure 1A, right panel) and kinetic studies (Figure S1A)

confirmed that the enrichment in CD1a+CD16� cells at pH 6.5 re-

flected an enhanced differentiation of monocytes into DCs and

not a reduction in the viability of CD1a� cells. Even a small reduc-

tion in the pH resulted in an enhanced frequency of mo-DCs. In

fact, a significant increase in DC differentiation was observed at

pH 7.0 compared with pH 7.3 (p < 0.01, n = 5) (Figure 1B). At pH

values lower than 6.0, a progressive decline in cell viability was

observed after 2 days of culture (data not shown), precluding

the analysis of DC differentiation. Interestingly, the culture of

monocytes at pH 6.5 for 24 h followed by an additional period

of 4 days at pH 7.3 significantly promoted the differentiation of

DCs, whereas the culture of monocytes at pH 6.5 for 3 days,
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followed by 2 days at pH 7.3, promoted DC differentiation in a

similar fashion as monocytes cultured for 5 days at pH 6.5 (Fig-

ure S1B). Further studies were performed to determine whether

acidosis might bypass the requirement of M-CSF, IL-4, or TNF-a

for mo-DC differentiation. In the absence of M-CSF, high

apoptosis levels were observed early in the cultures, either at

pH 7.3 or pH 6.5 (data not shown). Acidosis was shown to be

unable to induce the differentiation of mo-DCs in the absence

of IL-4 but significantly promoted their differentiation in the

absence of TNF-a (Figure S1C).

Morphological studies revealed that most of the cells cultured

with M-CSF, IL-4, and TNF-a at pH 6.5 showed a typical DC

morphology, whereas cells cultured at pH 7.3 differentiated

into macrophage-like cells (Figure 1C). Differentiation of mo-

DCs has been shown to be dependent on the activity of the

aryl hydrocarbon receptor (AHR) (Goudot et al., 2017). Using

two AHR inhibitors, stemregenin-1 or 4,7-dimethyl-1,10-phe-

nanthroline (4,7-DM Phe), we found a marked prevention of

mo-DCs differentiation at low pH. In contrast, the natural AHR

agonist 6-formylin-dolo (3,2-b) carbazole (FICZ) significantly

promoted DC differentiation at pH 7.3 (Figure 1D). These results

suggest that AHR plays an important role in the differentiation of

mo-DCs.

Functional studies revealed an increased expression of human

leukocyte antigen (HLA)-DR and CD86 upon lipopolysaccharide

(LPS) stimulation in cultures performed at pH 7.3 or pH 6.5 (Fig-

ure 1E, left panel). Cells cultured at pH 6.5 showed a higher pro-

duction of IL-1b and a lower production of IL-10 upon LPS stim-

ulation (Figure 1E, right panel). Moreover, they showed a high

ability to induce the proliferation of allogeneic T cells (Figures

1F–1H) and the production of IFN-g by alloreactive lymphocytes

(Figure 1I). To better characterize the functional profile of mo-

DCs we also used sorted cells. Sorted CD16� CD1a+ cells

(mo-DCs) obtained at either pH 7.3 or 6.5 produced higher levels

of IL-1b and lower levels of IL-10 upon LPS stimulation than

CD16+ CD1a� cells (n = 4, p < 0.01). As expected, sorted

CD16+ CD1a� cells displayed a negligible ability to induce the

proliferation and the production of IL-2 and IFN-g by allogeneic

T cells. In contrast, CD16� CD1a+ cells (mo-DCs) obtained at

either pH 7.3 or 6.5 showed a high ability to induce both re-

sponses (Figures 1J and 1K). Consistent with the ability of corti-

costeroids and prostaglandin E2 (PGE2) to promote the develop-
Figure 1. Low pH Promotes the Differentiation of mo-DCs in the Conte

(A–C) Isolated monocytes (5 3 105/ml) were cultured for 5 days at different pH

(5 ng/ml), and IL-4 (30 ng/ml). Then, the expression of CD1a and CD16 was det

rescence microscopy (C).

(D) Monocytes were cultured as described in (A), in the absence or presence of

hydroindolo(3,2-b)carbazole-6-carboxaldehyde (FICZ, 65 nM). Then, the express

(E–I) Monocytes were cultured as described in (A). Then, cells were stimulated, or n

panel), the production of cytokines (ELISA) (E, right panel), and cell ability to induce

T lymphocytes (I) were evaluated. A CD4+ T cell/antigen presenting cell ratio of

presenting cells were used. Monocytes were cultured as described in (A). Then, C

and CD16�/CD1a+ cells from cultures performed at pH 6.5 were sorted by fluores

24 h, and their ability to induce the proliferation and the production of IFN-g and IL

of 4:1) were evaluated (J and K).

(L) Cells were cultured as described in (A), in the absence or presence of dexameth

evaluated. Representative experiments (n = 3–15) are shown in (A, left), (B), (C), (D

(K), results are expressed as the mean ± SEM of 4–6 different donors. *p < 0.05,
ment of tolerogenic DCs (Kali�nski et al., 1997; Obermajer et al.,

2011; Woltman et al., 2000), we found that dexamethasone

and PGE2 almost completely prevented the differentiation of

mo-DCs either at pH 7.3 or pH 6.5 (Figure 1L).

Having shown the ability of low pH to promote the differentia-

tion of mo-DCs in the context of M-CSF/IL-4/TNF-a stimulation,

we analyzed whether a similar phenomenon might be observed

in a more complex system. We analyzed the effect induced by

low pH on whole peripheral blood mononuclear cells (PBMCs)

stimulated by phytohemagglutinin (PHA) for 7 days and studied

the phenotype of CD11b+ cells within the monocyte/macro-

phage gate of the forward scatter/side scatter (FSC/SSC) dot

plot. Cultures performed at pH 7.3 yielded two major cell popu-

lations (CD14� and CD14+ cells), both of which were negative for

CD1a expression. In contrast, cultures performed at pH 6.5 re-

sulted in the differentiation of a population of CD1a+ CD14� cells

(Figure S2A) that expressed CD1c, HLA-DR, dendritic cell-spe-

cific intercellular adhesion molecule-3-grabbing non-integrin

(DC-SIGN), and CD11c but not CD16 and CD64 (Figure S2B).

We then analyzed the phenotypic changes induced by LPS stim-

ulation. In these experiments, we used two cell populations as

controls, namely, classical DCs differentiated from monocytes

cultured with IL-4 and granulocyte macrophage colony-stimu-

lating factor (GM-CSF) and macrophages differentiated from

monocytes cultured with M-CSF. DCs differentiated from PHA-

stimulated PBMCs cultured at pH 6.5 and classical DCs showed

a similar maturation response after LPS stimulation, whereas

monocyte-derived macrophages showed only minor phenotypic

changes (Figure S2C). We also analyzed the ability of DCs to

induce the proliferation of allogeneic CD4+ T cells. PHA-stimu-

lated PBMCs were cultured for 7 days at pH 6.5, and

CD1a+CD16� cells were then sorted and activated for 24 h

with LPS. Contrasting with the observations made with mono-

cyte-derived macrophages, sorted CD1a+CD16� cells triggered

a proliferative response similar to that induced by classical DCs

(Figure S2D).

Because serum is able to modulate monocyte function (Gogo-

lak et al., 2007; Leslie et al., 2008), we analyzed if a similar

phenomenon would be observed in cultures performed in

serum-freemedium.Monocytes were cultured for 5 dayswithout

cytokines at pH 6.5 or 7.3 in medium supplemented with 0.1%

BSA. Under these conditions, we could recover only a fraction
xt of M-CSF, TNF-a, and IL-4 Stimulation

values, in medium supplemented with 10% FCS, M-CSF (100 ng/ml), TNF-a

ermined by flow cytometry (A–B), and cell morphology was analyzed by fluo-

stemregenin 1 (8 mM), 4,7-dimethyl-1, 10-phenanthroline (50 mM), or 5,11-di-

ion of CD1a, CD14, and CD16 was determined.

ot, with LPS (20 ng/ml) for 24 h, and the expression of HLA-DR andCD86 (E, left

the proliferation (F–H) and the production of IFN-g and IL-5 by allogeneic CD4+

4:1 was used in (F), (H), and (I). In (G), different ratios of CD4+T cells: antigen

D16+/CD1a� cells and CD16�/CD1a+ cells from cultures performed at pH 7.3

cence-activated cell sorting (FACS). Cells were treated with LPS (20 ng/ml) for

-2 by allogeneic CD4+ T lymphocytes (CD4+ T cell/antigen presenting cell ratio

asone (100 nM) or PGE2 (100 nM). Then, the expression of CD1a andCD14was

, left), (F), and (J, left), and (L). In (A, right), (D, right), (E), (G), (H), (I), (J, right), and

**p < 0.001, and*** p < 0.0001; pH 7.3 versus pH 6.5.
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Figure 2. Low Extracellular pH Decreases Intracellular pH and Induces a Starvation-like Response

(A) Monocytes (53 105/ml) were loaded with the fluorescent dye BCECF-AM and cultured for 18 h in medium supplemented with 10% FCS, M-CSF (100 ng/ml),

TNF-a (5 ng/ml), and IL-4 (30 ng/ml), at pH 7.3, pH 6.5 (left), or pH 7.3 in the presence of amiloride (100 mM) (right). Assessment of intracellular pH was performed

as described in Materials and Methods.

(B) Monocytes (53 105/ml) were cultured for 5 days at pH 7.3 inmedium supplementedwith 10%FCS,M-CSF (100 ng/ml), TNF-a (5 ng/ml), and IL-4 (30 ng/ml), in

the absence or presence of amiloride (100 mM). Then, the expression of CD1a, CD14, and CD16 was evaluated.

(C) Monocytes were cultured as described in (B), at pH 6.5 or pH 7.3. Then, glucose and lactate concentrations were determined by enzymatic methods.

(D) Monocytes were cultured as described in (C), in the absence or presence of DCA (dichloroacetate, 1 mM) or 2DG (2-deoxyglucose, 2 mM). Then, the

expression of CD1a, CD14, and CD16 was evaluated.

(E) Monocytes were cultured as described in (C), in the absence or presence of temsirolimus (100 nM). Then, glucose and lactate concentrations were determined

by enzymatic methods.

(legend continued on next page)
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of the total number of seeded cells that was significantly higher

for cultures performed at pH 6.than at pH 7.3 (Figure S2E). We

found that cultures performed at pH 6.5, but not at pH 7.3, re-

sulted in the differentiation of a population of DCs (Figure S2F)

that increased the expression of HLA-DR and CD86 upon LPS

stimulation (Figure S2G) and showed a high allostimulatory activ-

ity (Figure S2H). Notably, additional experiments performed in

serum-free medium revealed that differentiation of monocytes

into macrophages induced by M-CSF was redirected toward a

DC-like phenotype when cultures were performed at pH 6.5 (Fig-

ure S2I). These DCs increased the expression of HLA-DR and

CD86 upon LPS stimulation (Figure S2J) and showed a high

allostimulatory activity (Figure S2K). We also analyzed the influ-

ence of acidosis on the differentiation of mo-DCs induced by

GM-CSF and IL-4 in serum-supplemented medium (Sallusto

and Lanzavecchia, 1994). Acidosis did not promote, but rather

it partially inhibited (p < 0.05), the differentiation of mo-DCs

(Figure S3).

Low pH Induces a Fall in Intracellular pH and a
Starvation-like Response
High concentrations of protons modulate cell function by two

major mechanisms: by interacting with different families of pH

sensors expressed on the cell surface (Ishii et al., 2005; Liu

et al., 2010; Ludwig et al., 2003; Radu et al., 2005; Tong et al.,

2011) or by lowering cytosolic pH (Faucher and Naccache,

1987; Ritter et al., 1990; Simchowitz and Cragoe, 1986; Yuli

and Oplatka, 1987). We found that exposure of monocytes to

pH 6.5 resulted in a drop in cytoplasmic pH (Figure 2A, left). To

analyze if a decrease in cytosolic pH might be responsible for

the promotion of DC differentiation, we used the Na+/H+

exchanger (NHE) inhibitor amiloride. Consistent with the ability

of NHE inhibitors to induce the cytosolic accumulation of protons

(Kim et al., 1991), we found that amiloride profoundly decreased

intracellular pH (Figure 2A, right). Moreover, it significantly pro-

moted the differentiation of mo-DCs at pH 7.3 in the presence

of M-CSF, IL-4, and TNF-a (Figure 2B). Quantification of the ab-

solute number of cells in cultures performed in the presence of

amiloride confirmed that the enrichment in CD1a+CD16� cells

reflected an enhanced differentiation of monocytes into DCs

(Figure 2B, right panel). Promotion of DC differentiation induced

by amiloride was completely prevented by the AHR inhibitor

stemregenin-1 (Figure S4).

Previous studies in cell lines have shown that acidosis inhibits

glycolysis (Corbet et al., 2016; Lamonte et al., 2013). We found

that low pH as well as amiloride suppressed both glucose con-

sumption and lactate production in monocytes cultured with

M-CSF, IL-4, and TNF-a (Figure 2C). We hypothesized that inhi-

bition of glycolysis might explain, at least partially, the ability of

low pH to promote mo-DC differentiation. However, results in

Figure 2D showed that two glycolytic inhibitors, 2-deoxy-D-

glucose (2DG) and dichloroacetate (DCA), did not promote DC
(F and G) Monocytes were cultured as described in (C) for 4 h at pH 7.3 in the abs

Cells incubated for 4 h at pH 6.5 were also used (F). In all cases, cells were lysed

phosphorylation status of phospho(T389)-S6K using actin as a loading control was

(G). Results are expressed as the mean ± SEM of 3–5 different donors in (A), (B, rig

7.3.
differentiation. In fact, 2DG partially prevented mo-DC differenti-

ation, without affecting cell viability (data not shown). Studies

performed in cell lines have shown that the starvation response

induced by low pH involves not only the inhibition of glycolysis

but also the inhibition of the cellular nutrient sensor mTORC1

(Balgi et al., 2011; Walton et al., 2018). As expected, we found

that the mammalian target of rapamycin (mTOR) inhibitor temsir-

olimusmarkedly inhibited both glucose consumption and lactate

production (Figure 2E). Interestingly, low pH and amiloride

strongly inhibited mTORC1 activity (Figures 2F and 2G), raising

the possibility that inhibition of mTORC1 might contribute to

the ability of low pH to promote mo-DC differentiation.

mTORC1 Inhibition and Serum Starvation Promote the
Differentiation of mo-DCs
We then analyzed whether mTORC1 inhibition was able to pro-

mote the differentiation of monocytes into DCs. Figure 3A shows

that the mTORC1 inhibitor temsirolimus dramatically increased

the differentiation of mo-DCs induced by M-CSF, IL-4, and

TNF-a at pH 7.3. These mo-DCs showed a typical DC

morphology (Figure 3B) and the ability to upregulate the expres-

sion of CD86 and HLA-DR (Figure 3C) as well as the production

of IL-12 but not IL-10, IL-23, or IL-1b upon LPS stimulation (Fig-

ure 3D). Experiments performed with sorted cells indicated that

temsirolimus mo-DCs showed a high ability to induce the prolif-

eration of allogeneic T cells (Figure 3E) and the production of IL-2

and IFN-g by alloreactive lymphocytes (Figure 3F). Interestingly,

all these responses were induced at higher levels by temsiroli-

mus mo-DCs than by control mo-DCs. Contrasting with the ob-

servations made in mo-DCs differentiated at pH 7.3 and pH 6.5

(see Figure 1D), we found that the differentiation of temsirolimus

mo-DCs was not prevented by the AHR antagonist stemregenin-

1, suggesting that it bypasses the participation of AHR

(Figure S5).

Because serum activates mTOR, we hypothesized that cul-

tures performed in serum-free medium might also promote DC

differentiation. Decreasing serum concentrations from 10% to

1% promoted the differentiation of mo-DCs induced by

M-CSF, IL-4, and TNF-a (Figure 3G). We could not assay

serum-free conditions due to the high levels of cell death

observed (not shown). It has been reported that GM-CSF pro-

motes the differentiation of mo-DCs in cultures performed in

serum-free conditions (Suzuki et al., 2004). We confirmed this

previous finding (Figures 3H and 3I), andmoreover, we observed

that these DCs markedly increased CD86 expression and IL-12

production in response to LPS stimulation (Figure 3J), suggest-

ing the acquisition of an inflammatory profile.

Transcriptomic Analysis of mo-DCs
To further characterize the properties of the different mo-DC

populations arising from cultures performed at pH 7.3,

pH 6.5, or pH 7.3 plus temsirolimus, RNA-seq analysis of
ence or presence of temsirolimus (100nM) (F and G) or amiloride (100 mM) (G).

and analyzed by SDS-PAGE and western blotting. Immunoblot analysis of the

performed. Representative experiments (n = 3–6) are shown in (B, left), (F), and

ht), (C), (D), (E), (F) and (G). *p < 0.05, **p < 0.001, and ***p < 0.0001; versus pH
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sorted CD1a+CD16� cells was performed (Table S1; GEO:

GSE143170). First, we analyzed whether CD1a+CD16� cells

obtained under these experimental conditions shared a com-

mon transcriptional signature associated with DC identity (Gou-

dot et al., 2017; Segura et al., 2013). We found that

CD1a+CD16� cells from cultures performed at pH 7.3, pH

6.5, and pH 7.3 plus temsirolimus shared a high expression

of DC-associated genes, such as CD1A, CD1E, CD1B,

FCεR1A, ITGAX (CD11c), CD209 (DC-SIGN), CLEC10A,

ZBTB46, and CD83, and a low expression of macrophage-

associated genes like MERTK and CD163. A heatmap repre-

senting the gene expression data of the selected genes is

presented in Figure 4A (Table S2).

An analysis of the top 500 most variable genes (Figure 4B;

Table S3) and principal-component analysis (PCA) analysis (Fig-

ure 4C) showed that mo-DCs obtained in the presence of temsir-

olimus clustered separately from mo-DCs obtained at pH 7.3

and pH 6.5. Temsirolimus mo-DCs, on the other hand, were

shown to be enriched in the acquisition of more terminally differ-

entiated and maturation genes, such as CD1E, CD207 (Lan-

gerin), FCER1A, OCLN, CLDN1, CCR7, HLA-DQ, TNFRSF4,

and BIRC3 (Goudot et al., 2017; Jin et al., 2010; Matsunaga

et al., 2002; Villani et al., 2017; Figure 4D; Table S4). Differential

gene expression analysis between pH 6.5 and pH 7.3 mo-DCs

showed the presence of 148 upregulated and 191 downregu-

lated genes (Figure 4E; Table S5). Consistent with previous ob-

servations made in tumor cells (Corbet et al., 2016; Kondo

et al., 2017), we found that pH 6.5 promoted the expression of

genes associated with lipid metabolism and cholesterol biosyn-

thesis (Figures 4E and 4F; Table S5). Also consistent with previ-

ous studies in tumor cells and neurons (Khacho et al., 2014; Wu

et al., 2016; Xie et al., 2014), we found not only that mo-DCs

differentiated at pH 6.5 upregulated genes of the mitochondrial

respiratory chain (CI: NDUFC1, NDUFS7; CIII: UQCRB; CIV:

COX8A,COX6B1,NDUFA4) (Figures 4E and 4F; Table S5) but

also that the mitochondrial complex I inhibitor rotenone mark-

edly induced apoptosis of monocytes cultured with M-CSF,

TNF-a, and IL-4 at pH 6.5, but they exerted only minor effects

at pH 7.3 (Figure S6). This suggests a critical role for mitochon-

drial respiration in the survival of mo-DCs differentiated at low

pH values.
Figure 3. mTORC1 Inhibition and Serum Starvation Promote the Differ

(A and B) Monocytes (5 3 105/ml) were cultured for 5 days at pH 7.3 in medium

(30 ng/ml), in the absence or presence of temsirolimus (100 nM). The expression

analyzed by confocal microscopy (B).

(C andD).Monocyteswere cultured as described in (A) and treated, or not, with LP

by FACS (C). Secretion of IL12 , IL10, IL23, and IL1b was determined in the supe

(E and F) Monocytes were cultured as described in (A). Then, CD16+/CD1a� and

from cultures performed at pH 7.3 in the presence of temsirolimus (100nM)were so

induce the proliferation (E) and the production of IFN-g and IL-2 (F) by allogene

evaluated.

(G) Monocytes (53 105/ml) were cultured for 5 days at pH 7.3, in medium supple

and IL-4. Then, the expression of CD1a and CD14 was determined.

(H–J) Monocytes (5 3 105/ml) were cultured for 5 days in serum-free medium, in

presented in (H). A representative experiment using different concentrations of FC

medium were cultured for 24 h with or without LPS (20 ng/ml), and the expressio

periments are shown in (A, left), (B), (C, left), (E, left), (G, left), (H, left), (I), and (J, up

(D), (E, right), (F), (G, right), (H, right), and (J, low). *p < 0.05, **p < 0.001, and ***p
mTOR Inhibition Turns GM-CSF into a Strong Inducer of
mo-DC Differentiation
GM-CSF promotes the differentiation of monocytes into macro-

phage-like cells in serum-supplemented medium (Lacey et al.,

2012; Sander et al., 2017). We hypothesized that the inhibition

of mTORC1 in monocytes might subvert the biological activity

of GM-CSF, promoting the differentiation of mo-DCs. Figures

5A and 5B show that mTORC1 inhibition by temsirolimus effec-

tively promoted a DC differentiation program in GM-CSF-

treated monocytes. These mo-DCs increased the expression

of CD86 and HLA-DR upon LPS stimulation in a similar fashion

as classical DCs (Figure 5C). Notably, temsirolimus mo-DCs

showed a higher production of IL-12 and a lower production

of IL-10 upon LPS stimulation than classical DCs (Figure 5D).

Moreover, temsirolimus mo-DCs displayed a strong ability to

induce the proliferation of allogeneic T lymphocytes and the

production of IFN-g by alloreactive CD4+ T cells (Figures 5E

and 5F).

DISCUSSION

Infiltration of peripheral tissues by monocytes is a common

feature in the course of inflammatory processes and also oc-

curs under steady-state conditions (Ingersoll et al., 2011). After

entering tissues, monocytes can differentiate into macro-

phages or DCs (Cheong et al., 2010; Ginhoux and Jung,

2014; Randolph et al., 1999; van Furth and Cohn, 1968), but lit-

tle is known about the environmental factors that determine this

cell fate decision. Here, we show that low pH markedly pro-

motes the differentiation of mo-DCs under different experi-

mental conditions.

A large body of evidence from studies performed in cell

lines show that acidic pH profoundly reprograms cellular

metabolism from aerobic glycolysis toward fatty acid oxida-

tion in the mitochondria (Corbet et al., 2016; Khacho et al.,

2014; Lamonte et al., 2013). In line with these observations,

we found not only that low pH inhibited glucose uptake and

lactate production in the course of DC differentiation but

also that monocytes cultured at low pH upregulated genes

of the mitochondrial respiratory chain. Also consistent with

observations made in cell lines (Balgi et al., 2011; Corbet
entiation of mo-DCs

supplemented with 10% FCS, M-CSF (100 ng/ml), TNF-a (5 ng/ml), and IL-4

of CD1a, CD14, and CD16 was then evaluated (A), and cell morphology was

S during 24 h. The surface expression of CD86 andHLA-DRwas then evaluated

rnatants by ELISA(D).

CD16�/CD1a+ cells from cultures performed at pH 7.3 and CD16�/CD1a+ cells
rted by FACS. Cells were treatedwith LPS (20 ng/ml) for 24 h, and their ability to

ic CD4+ T lymphocytes (CD4 T cell/antigen presenting cell ratio of 4:1) were

mented with different concentrations of FCS, in the presence of M-CSF, TNFa,

the presence of GM-CSF (50 ng/ml). FACS analysis of the recovered cells is

S is shown in (I). Then, cells recovered from cultures performed in serum-free

n of CD86 and the production of IL-12 were analyzed (J). Representative ex-

). Results are expressed as the mean ± SEM of 3–6 different donors in (A, right),

< 0.0001; versus controls.
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Figure 4. Transcriptomic Analysis of mo-DCs

(A–F) Monocytes were cultured in the presence of M-CSF (100 ng/ml), TNFa (5 ng/ml), and IL-4 (30 ng/ml) for 5 days at pH 7.3, pH 6.5, or pH 7.3 in the presence of

temsirolimus (100 nM). Then, CD1a+CD16� cells were sorted by FACS, and RNA was extracted for RNA-seq analysis (n = 6).

(A) Heatmap presenting the log2 normalized expression data of selected genes corresponding either to macrophage-associated or DC-associated signatures.

(B) Top 500 highly variable genes and K-means clustering.

(C) PCA analysis of the top 500 highly variable genes.

(D) Venn diagram and volcano plot of differentially expressed genes obtained using DESeq2 (false discovery rate [FDR] > 0.05, fold change [FC] > 1) (pH 7.3 +

temsirolimus versus pH 7.3).

(E) Venn diagrams and volcano plots of differentially expressed genes obtained using DESeq2 (FDR > 0.05, FC > 1) (pH 6.5 versus pH 7.3).

(F) Schematic representation of up- and down-modulated groups of genes after pathway analysis (pH 6.5 versus pH 7.3).
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et al., 2016; Lamonte et al., 2013; Walton et al., 2018), we

found that low pH markedly inhibited the activity of mTORC1,

a cellular nutrient sensor that plays an essential role in cell

growth and survival (Kim and Guan, 2019; Saxton and Saba-

tini, 2017). Interestingly, the NHE inhibitor amiloride repro-

duced all the effects, suggesting that a drop in cytoplasmic
8 Cell Reports 31, 107613, May 5, 2020
pH might explain, at least partially, the ability of extracellular

pH to promote mo-DC differentiation.

Here, we also reported that the mTORC1 inhibitor temsiroli-

mus markedly promotes mo-DC differentiation. We found a

similar response in different cytokine contexts, i.e., in the pres-

ence of M-CSF, IL-4, and TNF-a, as well in the presence of



A

B C

D E F

Figure 5. mTOR Inhibition Turns GM-CSF into a Strong Inducer of mo-DC Differentiation

(A and B) Monocytes (13 106/ml) were cultured for 5 days at pH 7.3 in medium supplemented with 10% FCS and GM-CSF (50 ng/ml), in the absence or presence

of temsirolimus (100 nM). Then, the expression of CD1a, CD1c, and CD14 was determined (A), and cell morphology was analyzed by confocal microscopy (B).

Classical DCs, obtained from monocytes cultured with GM-CSF and IL-4 were used as controls.

(C and D)Monocytes were cultured as described in (A) and treated, or not, with LPS during 24 h. Then, the phenotype (C) and the production of different cytokines

were evaluated (D).

(E and F) Monocytes were cultured as described in (A) and treated, or not, with LPS during 24 h. Their ability to induce the proliferation (E) and the production of

IFN-g by allogeneic CD4+ T lymphocytes (CD4 T cell/antigen presenting cell ratio of 4:1) (F) was then evaluated. Representative experiments are shown in (A, left),

(B), (C, left), and (E, left). Results are expressed as the mean ± SEM of 3–6 different donors in (A, right), (C, right), (D), (E, right), and (F). *p < 0.05, **p < 0.001, and

***p < 0.0001; versus controls.
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GM-CSF. In contrast, and in agreement with previous results

(Haidinger et al., 2010), we observed (data not shown) that inhi-

bition of mTORC1 resulted in diminished cell viability in mono-
cytes cultured with GM-CSF and IL-4. Together, these observa-

tions indicate that the role of mTOR in the differentiation of mo-

DCs is strongly dependent on the cytokine environment.
Cell Reports 31, 107613, May 5, 2020 9
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Early studies identified mTORC1 inhibitors as immunosup-

pressive agents and were, thus, used to prevent allorejection in

transplanted patients (Saunders et al., 2001; Thomson et al.,

2009). More recent studies, however, suggested a more com-

plex picture. Rapamycin-mediated inhibition of mTOR has

been shown to increase CD8+ T cell memory (Araki et al.,

2009; Diken et al., 2013; Ferrer et al., 2010; Li et al., 2012; Rao

et al., 2010). Interestingly, Haidinger et al. (2010) reported diver-

gent roles for mTOR on blood DCs and DCs derived frommono-

cytes cultured with IL-4 and GM-CSF. Studies performed in mu-

rine models have shown that mTORC1 plays an important role in

the development of different populations of DCs, such as the

Flt3L-dependent CD8+ DC subset (Sathaliyawala et al., 2010)

and Langerhans cells (Kellersch and Brocker, 2013; Sukhbaatar

et al., 2016). Moreover, a number of studies showed that mTOR

inhibition promotes an inflammatory signature by already differ-

entiated DCs (Amiel et al., 2012; Jagannath and Bakhru, 2012;

Weichhart et al., 2008; Mineharu et al., 2014). Our present results

suggest that mTOR inhibition might contribute to inflammatory

reactions not only by promoting the acquisition of an inflamma-

tory signature by already differentiated DCs but also by inducing

the differentiation of tissue-infiltrating monocytes into mo-DCs.

Despite that low pH markedly inhibited mTORC1 activity, our

observations show a number of differences between the actions

induced by low pH and the mTORC1 inhibitor temsirolimus.

Transcriptomic analysis of DCs showed major differences.

Moreover, the AHR antagonist stemregenin-1 completely

prevented the differentiation of mo-DCs in the context of

M-CSF/IL-4/TNF-a stimulation at pH 6.5 without affecting the

differentiation of mo-DCs promoted by temsirolimus. Finally,

temsirolimus strongly induced the differentiation of mo-DCs in

the context of GM-CSF stimulation, whereas low pH did not

exert any significant effect. Further studies are required to define

the contribution of mTORC1 inhibition to the promoting effect of

low pH on mo-DC differentiation.

The mechanisms through which mTORC1 inhibition promotes

mo-DC differentiation remain to be elucidated. Different down-

stream effectors of the starvation response might be causally

implicated. mTORC1 acts as a link between cell nutritional status

and protein acetylation state (Wan et al., 2017; Wellen et al.,

2009). Serum deprivation (Wellen et al., 2009) and mTORC1 inhi-

bition (Wan et al., 2017) have been shown to promote major

changes in mitochondrial and cytosolic protein acetylation pat-

terns while inducing global histone deacetylation. Classical his-

tone deacetylases (HDACs) and Sirtuins, a type III HDAC, directly

modulate gene expression by deacetylating histones and regu-

lating the acetylation pattern of a variety of non-histone proteins,

thus impinging on several cellular processes (Yang and Seto,

2007; Yao and Yang, 2011). We hypothesize that the induction

of a starvation response induced by either serum deprivation

or mTORC1 inhibition might drive the differentiation of mo-DCs

by promoting changes in the acetylation pattern of histones

and non-histone proteins. Supporting this hypothesis, it has

been reported that the differentiation of mo-DCs is dependent

on the activity of HDACs (Chauvistré et al., 2014; Nencioni

et al., 2007). Moreover, our transcriptomic analysis of temsiroli-

mus mo-DCs revealed the upregulation of two HDACs, namely,

HDAC-1 and the type III HDAC SIRT1, which have previously
10 Cell Reports 31, 107613, May 5, 2020
shown to play an important role in the modulation of DC function

(Chauvistré et al., 2014; Owczarczyk et al., 2015; Reddy et al.,

2008). Notably, previous observations have also shown not

only that acidosis leads to a NAD+-dependent increase in the ac-

tivity of the histone deacetylases SIRT1 and SIRT6 but also that

tumor acidosis accounts for a net increase in tumor sensitivity to

SIRT1 inhibitors (Corbet et al., 2016; McBrian et al., 2013). We

hypothesize that modulation of HDAC expression and activity

might represent a final common pathway through which acidosis

and mTORC1 inhibition promoted the differentiation of mono-

cytes into DCs.
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Antibodies

APC Mouse Anti-Human CD1a BD Biosciences Cat# 559775, RRID:AB_398669

FITC Mouse Anti-Human CD1a BD Biosciences Cat #555806, RRID:AB_396140

BV421 Mouse Anti-Human CD14 BD Biosciences Cat # 563743, RRID:AB_2744289

FITC Mouse Anti-Human CD14 BD Biosciences Cat # 555397, RRID:AB_395798

PE Mouse Anti-Human CD14 BD Biosciences Cat # 555398, RRID:AB_395799

PE Mouse Anti-Human CD16 BD Biosciences Cat # 347617, RRID:AB_400331

FITC Mouse Anti-Human CD64 BD Biosciences Cat # 555527, RRID:AB_395913

APC Mouse Anti-Human CD209 BD Biosciences Cat # 551545, RRID:AB_647161

PE Mouse Anti-Human CD1c BD Biosciences Cat # 564900, RRID:AB_2739006

PE Mouse Anti-Human CD86 BD Biosciences Cat # 555658, RRID:AB_396013

FITC Mouse Anti-Human CD80 BD Biosciences Cat # 560926, RRID:AB_396605

FITC Mouse Anti-Human HLA-DR BD Biosciences Cat # 555811, RRID:AB_396145

APC-Cy7 Mouse Anti-Human HLA-DR BD Biosciences Cat # 335796, RRID:AB_399974

APC-Cy7 Mouse Anti-Human CD11b BD Biosciences Cat# 557754, RRID:AB_2033935

APC Mouse Anti-Human CD11C BD Biosciences Cat# 559877, RRID:AB_398680

Purified Mouse Anti-Human CD1a BD Biosciences Cat#555805, RRID:AB_396139

Alexa Fluor� 488 AffiniPure Donkey

Anti-Mouse IgG (H+L)

Jackson ImmunoResearch Cat# 715545150, RRID:AB_2341099

Phospho-p70 S6 Kinase (Thr389) Antibody Cell Signaling Cat# 9205, RRID:AB_2734746

beta Actin Loading Control Monoclonal

Antibody (BA3R)

Invitrogen Cat# MA5-15739, RRID:AB_10979409

Peroxidase AffiniPure Goat Anti-Rabbit IgG

(H+L)

Jackson ImmunoResearch Cat# 111-035-144, RRID:AB_2307391

Peroxidase AffiniPure Goat Anti-Mouse IgG

(H+L)

Jackson ImmunoResearch Cat# 115-035-003, RRID:AB_10015289

Chemicals, Peptides, and Recombinant Proteins

Alexa Fluor 594 Phalloidin Invitrogen Cat# A12381

L-PHA (L-Phytohemagglutinin) Sigma-Aldrich Cat# L2769

7AAD BD Biosciences Cat# 559925

FITC Annexin V BD Biosciences Cat# 556419

BCECF, AM (20,7’-Bis-(2-Carboxyethyl)-5-
(and-6)-Carboxyfluorescein, Acetoxymethyl

Ester)

Invitrogen Cat# B1170

eBioscience CFSE Invitrogen Cat# 65-0850-84

DAPI Fluoromount-G� Southern Biotech Cat# 0100-20

Bovine serum albumin DFS Labs (Argentina) BSA Standard

Amiloride hydrochloride hydrate Sigma-Aldrich Cat# A7410

Temsirolimus Sigma-Aldrich Cat# PZ0020

4,7-Dimethyl-1,10-phenanthroline Sigma-Aldrich Cat# 301809

2-Deoxy-D-glucose Sigma-Aldrich Cat# D8375

Sodium dichloroacetate Sigma-Aldrich Cat# 347795

Dexamethasone Sigma-Aldrich Cat# D4902

Prostaglandin E2 Sigma-Aldrich Cat# P0409

StemRegenin 1 Cayman Chemical Cat# 10625
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FICZ, 6-formylindolo[3,2-b]carbazole Cayman Chemical Cat# 19529

Rotenone Sigma-Aldrich Cat# R8875

Critical Commercial Assays

Enzymatic Glycemia Wiener Lab (Argentina) Cat# 1400060

Lactate Wiener Lab (Argentina) Cat# 1999795

Human IL-1b ELISA Set II BD Biosciences Cat# 557953

Human IL-6 ELISA Set BD Biosciences Cat# 555220

Human IL-8 ELISA Set BD Biosciences Cat# 555244

Human IL-10 ELISA Set BD Biosciences Cat# 555157

Human IL-12 (p70) ELISA Set BD Biosciences Cat# 555183

Human TNF ELISA Set BD Biosciences Cat# 555212

Human IL-23 DuoSet ELISA R & D Systems Cat# DY1290

CBA Human Th1/Th2 Cytokine Kit II BD Biosciences Cat# 551809

SMART-Seq v4 Ultra Low Input RNA Kit for

Sequencing

Takara Cat# 634888

RNeasy Plus Mini Kit QIAGEN Cat# 74136

Deposited Data

RNA-seq Data GEO GSE143170

Software and Algorithms

iDEP.90 software Ge et al., 2018 http://bioinformatics.sdstate.edu/idep/

DESeq2 Love et al., 2014 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

ShinyGO v0.61 Ge et al., 2019 http://bioinformatics.sdstate.edu/go/

tximport Soneson et al., 2015 https://bioconductor.org/packages/release/

bioc/html/tximport.html

FastQC Andrews, 2010 https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/

Salmon Patro et al., 2017 https://salmon.readthedocs.io/en/latest/

salmon.html

Morpheus https://software.broadinstitute.org/morpheus

DEBrowser Kucukural et al., 2019 https://bioconductor.org/packages/release/

bioc/html/debrowser.html

FlowJo V10 FlowJo LLC https://www.flowjo.com

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jorge

Geffner PhD, jorgegeffner@gmail.com.

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The accession number for the RNA-seq data reported in this paper is GEO: GSE143170.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human blood samples
Buffy coats from healthy donors (both male and female donors) were obtained from Sanatorio Mendez (Buenos Aires, Argentina) and

heparinized human blood samples were obtained from Hospital de Clı́nicas ‘‘José de San Martı́n,’’ Facultad de Medicina,
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Universidad de Buenos Aires. All the human blood samples used in this study would have been obtained even if this study was not

carried out, and they were supplied without any personal identifiable information.

METHOD DETAILS

Cell Isolation
PBMCswere isolated by centrifugation on Ficoll-Paque (GEHealthcare, Argentina). Monocytes were isolated fromPBMCs by Percoll

gradient centrifugation as described (Menck et al., 2014) or by positive selection using anti-CD14-coated magnetic beads according

to themanufacturer’s instructions (Miltenyi) (% purity 80-97). CD4+ T cells were isolated from heparinized blood samples by negative

selection using RosetteSep immunodensity procedure (Cell Signaling Technologies) (% purity > 95).

Cell cultures
All the experiments were performed using RPMI-1640 medium supplemented with 50 U/ml penicillin, 50 mg/ml streptomycin and

different percentages of fetal calf serum (FCS, GIBCO Invitrogen). Monocytes (5x105cells/ml) were cultured with or without the addi-

tion of M-CSF, TNFa, GM-CSF and/or IL-4 (Miltenyi) for different periods of time. L-Phytohemagglutinin (L-PHA, 1mg/ml, SIGMA/

Merk) was used to stimulate PBMCs. Cultures performed in serum-free medium were performed in culture medium supplemented,

or not, with 0.1% bovine serum albumin (BSA) (DSF Labs, Argentina). pH in the cultures was adjusted using isotonic HCl, as previ-

ously described (Jancic et al., 2012). pH values were determined on each day of the culture, in experiments performed in duplicate.

Cultures performed at pH 7.3 remained in the pH range 7.4 to 7.2 along the culture period. Those performed at pH 6.5 remained at pH

6.5-6.8 along the culture.

Flow cytometry & cell sorting
The analysis was performed by using a BD FACSCanto cytometer and BD FACSDiva software. APC anti-CD1a (# 559775), FITC anti-

CD1a (#555806), BV421 anti-CD14 (#563743), FITC anti-CD14 (#555397), PE anti-CD14 (555398), PE anti-CD16 (#347617), FITC

anti-CD64 (#555527), APC anti-CD209 (#551545), PE anti-CD1c (#564900), PE anti-CD86 (# 555658), FITC anti-CD80 (#560926),

FITC anti-HLA-DR (#555811), APCCy7 anti-HLA-DR (#335796), APCCy7 anti-CD11b (#557754), APC anti-CD11c (#559877) were

obtained from BD Biosciences. Sorting of CD1a+CD16- cells was performed using a BD FACSCanto cytometer.

Fluorescence and confocal microscopy
Cells were washed with PBS and resuspended in fresh RPMI medium followed by 30 minutes adhesion on poly-L-Lysine coated

glass coverslips. Attached cells were washed with PBS and fixed with 4% PFA solution at 4� for 15 min. Afterward, coverslips

were treated for 10 minutes with glycin 0.1M in PBS solution to quench aldehyde group autofluorescence and blocked with 1%

BSA solution in PBS. Coverslips were then incubated for 1h at room temperature with mouse IgG anti-human-CD1a (#555805) in

PBS 1% BSA (1:50 dilution) washed and incubated for 1h at room temperature with Alexa488 anti-mouse IgG (1:500) (Jackson

Immuno Research) and Alexa594-phalloidin (Thermo Fisher) (1:200). The coverslips mounted with DAPI-Fluoromount-G (Southern-

Biotech) were examined under a confocal microscope (ZEISS LSM 900) using a Plan Apochromat 633 1.42 NA oil immersion objec-

tive or under an Eclipse Ti-S fluorescence microscope (Nikon) using a Plan Apochromat 100 3 1.42 NA oil immersion objective.

Measurement of cytokines by ELISA
Supernatants frommonocyte-derived cells (5x105/ml), stimulated or not with LPS for 18h, were harvested and analyzed for the pres-

ence of IL-12(p70), IL-10, IL-1b, IL-23, TNFɑ, and IL-6. Supernatants collected from theMLRs at day 6 of culture were analyzed for the

presence of IFNɣ, IL-5, and IL-17. ELISA was performed with BD OptEIA sets according to the manufacturer recommendations or

using CBA Human Th1/Th2 Cytokine Kit II (BD).

Mixed Lymphocyte Reaction
Isolated CD4+ T cells (13 107 cells/ml) were labeled with 5 mMCFSE (Molecular Probes, Invitrogen) in PBS for 5 min at 37 �C. Cells
were washed and plated (2x105/200 ml) in 96well plates. Allogeneic monocyte-derived cells were counted and added to lymphocytes

using an APC/CD4+T cell ratio of 1:10, 1:4 or 1:2. After 6 days of culture, cells were harvested and CFSE dilution was assessed by

flow cytometry. Quantification of CD4+ T cell proliferation was determined by determining the fraction of T cells that diluted CFSE

dye.

Measurement of intracellular pH
It was performed using BCECF-AM as previously described (Chow et al., 1996). Briefly, monocytes (1x106/ml) were loaded in PBS

with 1 mg/ml BCECF-AM during 15 min at 37 �C, washed in PBS, and resuspended in culture medium (5 3 105/ml), adjusted to

different pH values, in the absence or presence of the Na+/H+ antiporter inhibitor amiloride (100nM). Then, cells were cultured for

12 h in the presence of M-CSF + TNFɑ + IL-4 and the values of intracellular pH for each condition were determined. The analysis

was performed by flow cytometry, with excitation at 488 nm and emission analysis at FL1 and FL3. The intracellular pH was
e3 Cell Reports 31, 107613, May 5, 2020



Report
ll

OPEN ACCESS
calculated from the ratio of emission intensities at the two wavelengths, standardizing by comparison with the fluorescence intensity

ratios of cells whose pHi values were fixed by incubation with nigericin (10 mM) in high-potassium buffers.

Analysis of glucose and lactate concentrations
Monocytes were cultured under different conditions at a concentration of 5x105 cells/ml. After 3 days, glucose and lactate

concentrations in culture supernatants were assessed using conventional enzymatic methods according to the manufacturer’s rec-

ommendations: Enzymatic Glycemia (#1400060) and Lactate (#1999795) determination kits from Wiener Lab, Argentina.

Cell lysates and immunoblots
Cells were washed in cold PBS and pellets were lysed in 4 x Laemmli sample buffer (Bio-Rad) with the addition of phosphatase in-

hibitor (Merk) and protease inhibitor cocktails (Roche). Equal amounts of lysates were separated on 12% SDS-PAGE, blotted on

Polyvinylidene Fluoride Transfer Membrane (Thermo Fisher Scientific). Blots were revealed using SuperSignal West Pico Chemilu-

minescent Substrate (Thermo Fisher Scientific). The intensity of the bands was quantified using the software ImageJ (National Insti-

tutes of Health) (Schneider et al., 2012). Anti Phospho-p70 S6 Kinase (Thr389) antibody (#9205, Cell Signaling) and Anti b-actin

(#MA5-15739, Thermo Fisher Scientific- Invitrogen) were used as primary antibodies. HRP conjugated secondary antibodies were

purchased from Jackson ImmunoResearch.

RNA-seq library preparation
RNA from sorted cells (250.000-500.000 CD1a+CD16- cells) was extracted by using RNeasy Mini Kit (QIAGEN), including on-column

DNase digestion as described by themanufacturer’s protocol. The integrity of the RNAwas confirmed in BioAnalyzer using RNA 6000

Pico kit (Agilent Technologies). cDNA was generated with SMART-Seq v4 Ultra Low Imput RNA Kit for Sequencing (Takara) following

manufacturer instructions. In order to amplify the RNA, 14 cycles were used. The quantity and quality of cDNA were assessed with

Qubit dsDNA high sensitivity (Thermofisher) and an Agilent Bioanalyzer using nanochip (Agilent Technologies), respectively. Unique

dual indexed libraries were obtained using Kapa HyperPlus Kit (Roche) based on cDNA as starting materials. Sequencing of a pool of

multiplexes libraries was performed on a NovaSeq system (Illumina) using a S1 flow cell in a paired-end 100 nts mode (PE100) allow-

ing to get anminimum average depth of 20million reads. Libraries, sequencing and quality control of the sequencing were performed

by the ICGex NGS facility at Institut Curie.

RNA-seq analysis
Genome assembly was based on the Genome Reference Consortium (hg38). Quality of RNA-seq data was assessed using FastQC

(Andrews, 2010). Reads were pseudo-aligned to the transcriptome using Salmon (Patro et al., 2017) and transcript expression values

were summarized using tximport (Soneson et al., 2015). Identification of the top 500 highly variable was performed using iDEP.90

software (http://bioinformatics.sdstate.edu/idep/) (Ge et al., 2018). Genes with < 1 CPM in at least 3 libraries were filtered out,

and counts data was transformed for clustering and PCA using EdgeR (log2(CPM+c)) (pseudocount c = 4). Unsupervised K means

clustering of the 500 highly variable genes was performed considering 3 clusters and mean centered gene normalization. Differential

gene expression analysis was performed using iDEP.90 software (Ge et al., 2018) and the Bioconductor packageDESeq2 (Love et al.,

2014). Statistically significant differentially expressed genes were considered when < 0.05 FDR and FC > 1. The list of upregulated

and downregulated differentially expressed genes was used for pathway analysis using ShinyGO v0.61 (Ge et al., 2019) (http://

bioinformatics.sdstate.edu/go/) and the databases: Reactome, KEGG and GO Biological process. Heatmaps were plotted using

Morpheus (https://software.broadinstitute.org/morpheus). Volcano plots were performed using R Studio Version 1.2.5001 and DE-

Browser shinny application (Kucukural et al., 2019).

Chemicals
Amiloride hydrochloride hydrate, temsirolimus, 4,7-dimethyl-1,10-phenanthroline, 2-deoxyglucose (2DG), dichloroacetate (DCA),

dexamethasone, and PGE2 were purchased from Sigma-Aldrich-Merck. Stemregenin 1 and 6-formylindolo[3,2-b]carbazole (FICZ)

were purchased from Cayman Chemical Company.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Data were analyzed using Wilcoxon nonparametric paired test in which P values of < 0.05 were considered statistically significant.

Analysis was performed using GraphPad Prism V5. ‘‘n’’ corresponds to the number of individual donors analyzed.
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