252 research outputs found

    Quantitative detection of drug dose and spatial distribution in the lung revealed by Cryoslicing Imaging

    Get PDF
    AbstractAdministration of drugs via inhalation is an attractive route for pulmonary and systemic drug delivery. The therapeutic outcome of inhalation therapy depends not only on the dose of the lung-delivered drug, but also on its bioactivity and regional distribution. Fluorescence imaging has the potential to monitor these aspects already during preclinical development of inhaled drugs, but quantitative methods of analysis are lacking. In this proof-of-concept study, we demonstrate that Cryoslicing Imaging allows for 3D quantitative fluorescence imaging on ex vivo murine lungs. Known amounts of fluorescent substance (nanoparticles or fluorophore–drug conjugate) were instilled in the lungs of mice. The excised lungs were measured by Cryoslicing Imaging. Herein, white light and fluorescence images are obtained from the face of a gradually sliced frozen organ block. A quantitative representation of the fluorescence intensity throughout the lung was inferred from the images by accounting for instrument noise, tissue autofluorescence and out-of-plane fluorescence. Importantly, the out-of-plane fluorescence correction is based on the experimentally determined effective light attenuation coefficient of frozen murine lung tissue (10.0±0.6cm−1 at 716nm). The linear correlation between pulmonary total fluorescence intensity and pulmonary fluorophore dose indicates the validity of this method and allows direct fluorophore dose assessment. The pulmonary dose of a fluorescence-labeled drug (FcγR-Alexa750) could be assessed with an estimated accuracy of 9% and the limit of detection in ng regime. Hence, Cryoslicing Imaging can be used for quantitative assessment of dose and 3D distribution of fluorescence-labeled drugs or drug carriers in the lungs of mice

    Final countdown for biodiversity hotspots

    Get PDF
    Most of Earth's biodiversity is found in 36 biodiversity hotspots, yet less than 10% natural intact vegetation remains. We calculated models projecting the future state of most of these hotspots for the year 2050, based on future climatic and agroeconomic pressure. Our models project an increasing demand for agricultural land resulting in the conversion of >50% of remaining natural intact vegetation in about one third of all hotspots, and in 2-6 hotspots resulting from climatic pressure. This confirms that, in the short term, habitat loss is of greater concern than climate change for hotspots and their biodiversity. Hotspots are most severely threatened in tropical Africa and parts of Asia, where demographic pressure and the demand for agricultural land is highest. The speed and magnitude of pristine habitat loss is, according to our models, much greater than previously shown when combining both scenarios on future climatic and agroeconomic pressure

    E46K Parkinson's-linked mutation enhances C-terminal-to-N-terminal contacts in alpha-synuclein

    Get PDF
    Parkinson's disease (PD) is associated with the deposition of fibrillar aggregates of the protein alpha-synuclein (alphaS) in neurons. Intramolecular contacts between the acidic C-terminal tail of alphaS and its N-terminal region have been proposed to regulate alphaS aggregation, and two originally described PD mutations, A30P and A53T, reportedly reduce such contacts. We find that the most recently discovered PD-linked alphaS mutation E46K, which also accelerates the aggregation of the protein, does not interfere with C-terminal-to-N-terminal contacts and instead enhances such contacts. Furthermore, we do not observe a substantial reduction in such contacts in the two previously characterized mutants. Our results suggest that C-terminal-to-N-terminal contacts in alphaS are not strongly protective against aggregation, and that the dominant mechanism by which PD-linked mutations facilitate alphaS aggregation may be altering the physicochemical properties of the protein such as net charge (E46K) and secondary structure propensity (A30P and A53T)

    DEMO-Relevant Gyrotron Research at KIT

    Get PDF
    The DEMO-relevant gyrotron research at Karlsruhe Institute of Technology is driven by the European concept for a demonstration fusion reactor (EU DEMO). This paper reports on the recent results of the theoretical and experimental studies towards the development of gyrotrons fulfilling the DEMO needs

    Combining targeted and systematic prostate biopsy improves prostate cancer detection and correlation with the whole mount histopathology in biopsy naïve and previous negative biopsy patients

    Get PDF
    OBJECTIVE: Guidelines for previous negative biopsy (PNB) cohorts with a suspicion of prostate cancer (PCa) after positive multiparametric (mp) magnetic-resonance-imaging (MRI) often favour the fusion-guided targeted prostate-biopsy (TB) only approach for Prostate Imaging-Reporting and Data System (PI-RADS) ≥3 lesions. However, recommendations lack direct biopsy performance comparison within biopsy naïve (BN) vs. PNB patients and its prognostication of the whole mount pathology report (WMPR), respectively. We suppose, that the combination of TB and concomitant TRUS-systematic biopsy (SB) improves the PCa detection rate of PI-RADS 2, 3, 4 or 5 lesions and the International Society of Urological Pathology (ISUP)-grade predictability of the WMPR in BN- and PNB patients. METHODS: Patients with suspicious mpMRI, elevated prostate-specific-antigen and/or abnormal digital rectal examination were included. All PI-RADS reports were intramurally reviewed for biopsy planning. We compared the PI-RADS score substratified TB, SB or combined approach (TB/SB) associated BN- and PNB-PCa detection rate. Furthermore, we assessed the ISUP-grade variability between biopsy cores and the WMPR. RESULTS: According to BN (n = 499) vs. PNB (n = 314) patients, clinically significant (cs) PCa was detected more frequently by the TB/SB approach (62 vs. 43%) than with the TB (54 vs. 34%) or SB (57 vs. 34%) (all p < 0.0001) alone. Furthermore, we observed that the TB/SB strategy detects a significantly higher number of csPCa within PI-RADS 3, 4 or 5 reports, both in BN and PNB men. In contrast, applied biopsy techniques were equally effective to detect csPCa within PI-RADS 2 lesions. In case of csPCa diagnosis the TB approach was more often false-negative in PNB patients (BN 11% vs. PNB 19%; p = 0.02). The TB/SB technique showed in general significantly less upgrading, whereas a higher agreement was only observed for the total and BN patient cohort. CONCLUSION: Despite csPCa is more frequently found in BN patients, the TB/SB method always detected a significantly higher number of csPCa within PI-RADS 3, 4 or 5 reports of our BN and PNB group. The TB/SB strategy predicts the ISUP-grade best in the total and BN cohort and in general shows the lowest upgrading rates, emphasizing its value not only in BN but also PNB patients

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore