8 research outputs found

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    Electronic spectral and photophysical properties of some p-phenylenevinylene oligomers in solution and thin films

    Get PDF
    A comprehensive photophysical and spectroscopic study of a new class of p-phenylenevinylene oligomers (PPV-trimers) possessing different alkyl and alkyloxy sidechain substituents and different end groups (aldehyde, CC, phenylene and anthracene units) was undertaken in solution at room temperature (293 K), low temperature (77 K) and in thin films. The study comprises absorption, emission and triplet-triplet absorption spectra, together with quantitative measurements of quantum yields (fluorescence, intersystem crossing, internal conversion and singlet oxygen formation) and lifetimes. The data allow the determination of rate constants for all decay processes. From these, several conclusions could be drawn. Changing from alkyl to alkyloxy substituents does not change fluorescence and internal conversion yields but decreases the (already small) intersystem crossing yield. The introduction of anthracene at the terminal ends of the PPV-trimers leads to the lowest fluorescence yield reported in this study. Of particular importance is the fact that the fluorescence quantum yields in films are of the same order of magnitude as those in solution, which suggests the potential for use of these oligomers for light-emitting device applications. With one of the alkyloxy derivatives, a more detailed study of the early part of the fluorescence decay was made, and it was found that upon excitation a fast conformational relaxation process of the initially excited oligomer occurs, leading to a more planar conjugation segment.http://www.sciencedirect.com/science/article/B6TFM-4KXWDH3-1/1/7fda7eda4dc250233a3c905cd185f89

    CMS physics technical design report: Addendum on high density QCD with heavy ions

    Get PDF
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies ,will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low pT inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high pT hadrons which yield "tomographic" information of the hottest and densest phases of the reaction.0info:eu-repo/semantics/publishe

    A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider

    Get PDF
    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force-the W+, W-, and Z(0) bosons-as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 x 10(6). The new particle is a boson with spin not equal to 1 and has a mass of about 1.25 giga-electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF
    The article is the pre-print version of the final publishing paper that is available from the link below.Results are presented from searches for the standard model Higgs boson in proton–proton collisions At √s = 7 and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb−1 at 7TeV and 5.3 fb−1 at 8 TeV. The search is performed in five decay modes: γγ, ZZ, W+W−, τ+τ−, and bb. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, γγ and ZZ; a fit to these signals gives a mass of 125.3±0.4(stat.)±0.5(syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one
    corecore