775 research outputs found

    Planetary Nebula Abundances and Morphology: Probing the Chemical Evolution of the Milky Way

    Get PDF
    This paper presents a homogeneous study of abundances in a sample of 79 northern galactic planetary nebulae whose morphological classes have been uniformly determined. Ionic abundances and plasma diagnostics were derived from selected optical line strengths in the literature, and elemental abundances were estimated with the Ionization Correction Factor developed by Kingsbourgh & Barlow (1994). We compare the elemental abundances to the final yields obtained from stellar evolution models of low-and intermediate-mass stars, and we confirm that most Bipolar planetary nebulae have high nitrogen and helium abundance, and are the likely progeny of stars with main-sequence mass larger than 3 solar masses. We derive =0.27, and discuss the implication of such a high ratio in connection with the solar neon abundance. We determine the galactic gradients of oxygen and neon, and found Delta log (O/H)/Delta R=-0.01 dex/kpc$ and Delta log (Ne/H)/Delta R=-0.01 dex/kpc. These flat PN gradients do not reconcile with galactic metallicity gradients flattening with time.Comment: The Astrophysical Journal, in pres

    Kinematical Analysis of a Sample of Bipolar Planetary Nebulae

    Full text link
    We present the kinematics of a sample of bipolar planetary nebulae (PNe) which cover a wide range of observed morphologies and collimation degrees, from bipolar PNe with a marked equatorial ring and wide lobes to highly collimated objects. We use an empirical model in order to derive the expansion velocity, collimation degree, and inclination angle of the PN with respect to the plane of the sky. The equatorial expansion velocities measured in the objects in our sample are always in the low to medium range (3-16km/s),while their polar expansion velocities range from low to very high (18-100 km/s). None of the objects in our sample, even those that show an extreme collimation degree, seem to be (kinematically) younger than ~1000 yr. We compare our results with the state-of-the-art theoretical models for the formation of bipolar PNe. We find good agreement between the observed expansion velocities and numerical models that use magnetic fields with stellar rotation as collimation mechanism.Comment: 18 pages, 8 figures, accepted for publication in The Astronomical Journa

    DeepCABAC: A Universal Compression Algorithm for Deep Neural Networks

    Full text link
    The field of video compression has developed some of the most sophisticated and efficient compression algorithms known in the literature, enabling very high compressibility for little loss of information. Whilst some of these techniques are domain specific, many of their underlying principles are universal in that they can be adapted and applied for compressing different types of data. In this work we present DeepCABAC, a compression algorithm for deep neural networks that is based on one of the state-of-the-art video coding techniques. Concretely, it applies a Context-based Adaptive Binary Arithmetic Coder (CABAC) to the network's parameters, which was originally designed for the H.264/AVC video coding standard and became the state-of-the-art for lossless compression. Moreover, DeepCABAC employs a novel quantization scheme that minimizes the rate-distortion function while simultaneously taking the impact of quantization onto the accuracy of the network into account. Experimental results show that DeepCABAC consistently attains higher compression rates than previously proposed coding techniques for neural network compression. For instance, it is able to compress the VGG16 ImageNet model by x63.6 with no loss of accuracy, thus being able to represent the entire network with merely 8.7MB. The source code for encoding and decoding can be found at https://github.com/fraunhoferhhi/DeepCABAC

    Implementing sustainable primary healthcare reforms: strategies from Costa Rica

    Get PDF
    As the world strives to achieve universal health coverage by 2030, countries must build robust healthcare systems founded on strong primary healthcare (PHC). In order to strengthen PHC, country governments need actionable guidance about how to implement health reform. Costa Rica is an example of a country that has taken concrete steps towards successfully improving PHC over the last two decades. In the 1990s, Costa Rica implemented three key reforms: governance restructuring, geographic empanelment, and multidisciplinary teams. To understand how Costa Rica implemented these reforms, we conducted a process evaluation based on a validated implementation science framework. We interviewed 39 key informants from across Costa Rica’s healthcare system in order to understand how these reforms were implemented. Using the Exploration Preparation Implementation Sustainment (EPIS) framework, we coded the results to identify Costa Rica’s key implementation strategies and explore underlying reasons for Costa Rica’s success as well as ongoing challenges. We found that Costa Rica implemented PHC reforms through strong leadership, a compelling vision and deliberate implementation strategies such as building on existing knowledge, resources and infrastructure; bringing together key stakeholders and engaging deeply with communities. These reforms have led to dramatic improvements in health outcomes in the past 25 years. Our in-depth analysis of Costa Rica’s specific implementation strategies offers tangible lessons and examples for other countries as they navigate the important but difficult work of strengthening PHC

    Alzheimer's Disease and Small Vessel Disease Differentially Affect White Matter Microstructure

    Get PDF
    OBJECTIVE: Alzheimer's disease (AD) and cerebral small vessel disease (cSVD), the two most common causes of dementia, are characterized by white matter (WM) alterations diverging from the physiological changes occurring in healthy aging. Diffusion tensor imaging (DTI) is a valuable tool to quantify WM integrity non-invasively and identify the determinants of such alterations. Here, we investigated main effects and interactions of AD pathology, APOE-ε4, cSVD, and cardiovascular risk on spatial patterns of WM alterations in non-demented older adults.METHODS: Within the prospective European Prevention of Alzheimer's Dementia study, we selected 606 participants (64.9 ± 7.2 years, 376 females) with baseline cerebrospinal fluid samples of amyloid β 1-42 and p-Tau 181 and MRI scans, including DTI scans. Longitudinal scans (mean follow-up time = 1.3 ± 0.5 years) were obtained in a subset (n = 223). WM integrity was assessed by extracting fractional anisotropy and mean diffusivity in relevant tracts. To identify the determinants of WM disruption, we performed a multimodel inference to identify the best linear mixed-effects model for each tract. RESULTS: AD pathology, APOE-ε4, cSVD burden, and cardiovascular risk were all associated with WM integrity within several tracts. While limbic tracts were mainly impacted by AD pathology and APOE-ε4, commissural, associative, and projection tract integrity was more related to cSVD burden and cardiovascular risk. AD pathology and cSVD did not show any significant interaction effect.INTERPRETATION: Our results suggest that AD pathology and cSVD exert independent and spatially different effects on WM microstructure, supporting the role of DTI in disease monitoring and suggesting independent targets for preventive medicine approaches.</p

    Calcium-dependent conformational changes of membrane-bound Ebola fusion peptide drive vesicle fusion

    Get PDF
    The fusogenic subdomain of the Ebola virus envelope glycoprotein is an internal sequence located ca. 20 residues downstream the N‐terminus of the glycoprotein transmembrane subunit. Partitioning of the Ebola fusion peptide into membranes containing phosphatidylinositol in the absence of Ca2+ stabilizes an α‐helical conformation, and gives rise to vesicle efflux but not vesicle fusion. In the presence of millimolar Ca2+ the membrane‐bound peptide adopts an extended β‐structure, and induces inter‐vesicle mixing of lipids. The peptide conformational polymorphism may be related to the flexibility of the virus-cell intermembrane fusogenic complex

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe
    corecore