This paper presents a homogeneous study of abundances in a sample of 79
northern galactic planetary nebulae whose morphological classes have been
uniformly determined. Ionic abundances and plasma diagnostics were derived from
selected optical line strengths in the literature, and elemental abundances
were estimated with the Ionization Correction Factor developed by Kingsbourgh &
Barlow (1994). We compare the elemental abundances to the final yields obtained
from stellar evolution models of low-and intermediate-mass stars, and we
confirm that most Bipolar planetary nebulae have high nitrogen and helium
abundance, and are the likely progeny of stars with main-sequence mass larger
than 3 solar masses. We derive =0.27, and discuss the implication of such
a high ratio in connection with the solar neon abundance. We determine the
galactic gradients of oxygen and neon, and found Delta log (O/H)/Delta R=-0.01
dex/kpc$ and Delta log (Ne/H)/Delta R=-0.01 dex/kpc. These flat PN gradients do
not reconcile with galactic metallicity gradients flattening with time.Comment: The Astrophysical Journal, in pres