6 research outputs found

    Search for supersymmetry in events with photons, bottom quarks, and missing transverse momentum in proton-proton collisions at a centre-of-mass energy of 7 TeV with the ATLAS detector

    Get PDF
    Contains fulltext : 111247.pdf (preprint version ) (Open Access

    The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana

    No full text
    The aromatic amino acids phenylalanine, tyrosine and tryptophan in plants are not only essential components of protein synthesis, but also serve as precursors for a wide range of secondary metabolites that are important for plant growth as well as for human nutrition and health. The aromatic amino acids are synthesized via the shikimate pathway followed by the branched aromatic amino acid metabolic pathway, with chorismate serving as a major branch point intermediate metabolite. Yet, the regulation of their synthesis is still far from being understood. So far, only three enzymes in this pathway, namely, chorismate mutase of phenylalanine and tyrosine synthesis, tryptophan synthase of tryptophan biosynthesis and arogenate dehydratase of phenylalanine biosynthesis, proved experimentally to be allosterically regulated. The major biosynthesis route of phenylalanine in plants occurs via arogenate. Yet, recent studies suggest that an alternative route of phynylalanine biosynthesis via phenylpyruvate may also exist in plants, similarly to many microorganisms. Several transcription factors regulating the expression of genes encoding enzymes of both the shikimate pathway and aromatic amino acid metabolism have also been recently identified in Arabidopsis and other plant species

    Vorapaxar in the secondary prevention of atherothrombotic events

    Get PDF
    Item does not contain fulltextBACKGROUND: Thrombin potently activates platelets through the protease-activated receptor PAR-1. Vorapaxar is a novel antiplatelet agent that selectively inhibits the cellular actions of thrombin through antagonism of PAR-1. METHODS: We randomly assigned 26,449 patients who had a history of myocardial infarction, ischemic stroke, or peripheral arterial disease to receive vorapaxar (2.5 mg daily) or matching placebo and followed them for a median of 30 months. The primary efficacy end point was the composite of death from cardiovascular causes, myocardial infarction, or stroke. After 2 years, the data and safety monitoring board recommended discontinuation of the study treatment in patients with a history of stroke owing to the risk of intracranial hemorrhage. RESULTS: At 3 years, the primary end point had occurred in 1028 patients (9.3%) in the vorapaxar group and in 1176 patients (10.5%) in the placebo group (hazard ratio for the vorapaxar group, 0.87; 95% confidence interval [CI], 0.80 to 0.94; P<0.001). Cardiovascular death, myocardial infarction, stroke, or recurrent ischemia leading to revascularization occurred in 1259 patients (11.2%) in the vorapaxar group and 1417 patients (12.4%) in the placebo group (hazard ratio, 0.88; 95% CI, 0.82 to 0.95; P=0.001). Moderate or severe bleeding occurred in 4.2% of patients who received vorapaxar and 2.5% of those who received placebo (hazard ratio, 1.66; 95% CI, 1.43 to 1.93; P<0.001). There was an increase in the rate of intracranial hemorrhage in the vorapaxar group (1.0%, vs. 0.5% in the placebo group; P<0.001). CONCLUSIONS: Inhibition of PAR-1 with vorapaxar reduced the risk of cardiovascular death or ischemic events in patients with stable atherosclerosis who were receiving standard therapy. However, it increased the risk of moderate or severe bleeding, including intracranial hemorrhage. (Funded by Merck; TRA 2P-TIMI 50 ClinicalTrials.gov number, NCT00526474.)
    corecore