104 research outputs found

    Evaluating estuarine nursery use and life history patterns of Pomatomus saltatrix in eastern Australia

    Get PDF
    Estuaries provide important nursery habitats for juvenile fish, but many species move between estuarine and coastal habitats throughout their life. We used otolith chemistry to evaluate the use of estuaries and the coastal marine environment by juvenile Pomatomus saltatrix in eastern Australia. Otolith chemical signatures of juveniles from 12 estuaries, spanning 10° of latitude, were characterised using laser ablation-inductively coupled plasma-mass spectrometry. Based upon multivariate otolith elemental signatures, fish collected from most estuaries could not be successfully discriminated from one another. This was attributed to the varying influence of marine water on otolith elemental composition in fish from all estuaries. Using a reduced number of estuarine groups, the multivariate juvenile otolith elemental signatures and univariate Sr:Ca ratio suggest that between 24 and 52% of adult P. saltatrix had a juvenile period influenced by the marine environment. Elemental profiles across adult (age-1) otoliths highlighted a variety of life history patterns, not all consistent with a juvenile estuarine phase. Furthermore, the presence of age-0 juveniles in coastal waters was confirmed from historical length-frequency data from coastal trawls. Combining multiple lines of evidence suggests considerable plasticity in juvenile life history for P. saltatrix in eastern Australia through their utilisation of both estuarine and coastal nurseries. Knowledge of juvenile life history is important for the management of coastal species of commercial and recreational importance such as P. saltatrix.info:eu-repo/semantics/publishedVersio

    Multi-decadal trends in large-bodied fish populations in the New South Wales Murray-Darling Basin, Australia

    Full text link
    Context: Native fish populations in Australia's Murray-Darling Basin (MDB) have experienced severe declines since European settlement. Information on their status is needed to guide management and recovery. Aims: To quantify trends in MDB fish populations in New South Wales (NSW) from 1994 to 2022. Methods: Relative abundance, biomass, and size structure were examined using generalised additive mixed models at NSW MDB and river catchment (valley) scales for five native species (Murray cod, Maccullochella peelii, golden perch, Macquaria ambigua, silver perch, Bidyanus bidyanus, Macquarie perch, Macquaria australasica, freshwater catfish, Tandanus tandanus) and one alien species (common carp, Cyprinus carpio). Key results: There was strong inter-annual variation in relative abundance, biomass and population structure for all species. At the Basin scale, relative abundance of Murray cod, golden perch and common carp increased across the time series, with no clear trends for silver perch, Macquarie perch or freshwater catfish. Patterns in relative abundance, biomass, and population structure were variable among valleys for most species. Conclusions and implications: Although native fish populations in the MDB remain degraded and face escalating threats, recent increases in the abundance of some native species are an encouraging sign that integrated restoration efforts can improve the outlook for native fish

    A procedure for the estimation over time of metabolic fluxes in scenarios where measurements are uncertain and/or insufficient

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An indirect approach is usually used to estimate the metabolic fluxes of an organism: couple the available measurements with known biological constraints (e.g. stoichiometry). Typically this estimation is done under a static point of view. Therefore, the fluxes so obtained are only valid while the environmental conditions and the cell state remain stable. However, estimating the evolution over time of the metabolic fluxes is valuable to investigate the dynamic behaviour of an organism and also to monitor industrial processes. Although Metabolic Flux Analysis can be successively applied with this aim, this approach has two drawbacks: i) sometimes it cannot be used because there is a lack of measurable fluxes, and ii) the uncertainty of experimental measurements cannot be considered. The Flux Balance Analysis could be used instead, but the assumption of optimal behaviour of the organism brings other difficulties.</p> <p>Results</p> <p>We propose a procedure to estimate the evolution of the metabolic fluxes that is structured as follows: 1) measure the concentrations of extracellular species and biomass, 2) convert this data to measured fluxes and 3) estimate the non-measured fluxes using the Flux Spectrum Approach, a variant of Metabolic Flux Analysis that overcomes the difficulties mentioned above without assuming optimal behaviour. We apply the procedure to a real problem taken from the literature: estimate the metabolic fluxes during a cultivation of CHO cells in batch mode. We show that it provides a reliable and rich estimation of the non-measured fluxes, thanks to considering measurements uncertainty and reversibility constraints. We also demonstrate that this procedure can estimate the non-measured fluxes even when there is a lack of measurable species. In addition, it offers a new method to deal with inconsistency.</p> <p>Conclusion</p> <p>This work introduces a procedure to estimate time-varying metabolic fluxes that copes with the insufficiency of measured species and with its intrinsic uncertainty. The procedure can be used as an off-line analysis of previously collected data, providing an insight into the dynamic behaviour of the organism. It can be also profitable to the on-line monitoring of a running process, mitigating the traditional lack of reliable on-line sensors in industrial environments.</p

    A Pathogenic Mechanism in Huntington's Disease Involves Small CAG-Repeated RNAs with Neurotoxic Activity

    Get PDF
    Huntington's disease (HD) is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the Huntingtin (HTT) gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level. In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete penetrance (40 or greater) induced cell death and increased levels of small CAG-repeated RNAs (sCAGs), of ≈21 nucleotides in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic approaches

    Quantitative modeling of the physiology of ascites in portal hypertension

    Get PDF
    Although the factors involved in cirrhotic ascites have been studied for a century, a number of observations are not understood, including the action of diuretics in the treatment of ascites and the ability of the plasma-ascitic albumin gradient to diagnose portal hypertension. This communication presents an explanation of ascites based solely on pathophysiological alterations within the peritoneal cavity. A quantitative model is described based on experimental vascular and intraperitoneal pressures, lymph flow, and peritoneal space compliance. The model's predictions accurately mimic clinical observations in ascites, including the magnitude and time course of changes observed following paracentesis or diuretic therapy

    Seascape ecology : identifying research priorities for an emerging ocean sustainability science

    Get PDF
    Seascape ecology, the marine-centric counterpart to landscape ecology, is rapidly emerging as an interdisciplinary and spatially explicit ecological science with relevance to marine management, biodiversity conservation, and restoration. While important progress in this field has been made in the past decade, there has been no coherent prioritisation of key research questions to help set the future research agenda for seascape ecology. We used a 2-stage modified Delphi method to solicit applied research questions from academic experts in seascape ecology and then asked respondents to identify priority questions across 9 interrelated research themes using 2 rounds of selection. We also invited senior management/conservation practitioners to prioritise the same research questions. Analyses highlighted congruence and discrepancies in perceived priorities for applied research. Themes related to both ecological concepts and management practice, and those identified as priorities include seascape change, seascape connectivity, spatial and temporal scale, ecosystem-based management, and emerging technologies and metrics. Highest-priority questions (upper tercile) received 50% agreement between respondent groups, and lowest priorities (lower tercile) received 58% agreement. Across all 3 priority tiers, 36 of the 55 questions were within a ±10% band of agreement. We present the most important applied research questions as determined by the proportion of votes received. For each theme, we provide a synthesis of the research challenges and the potential role of seascape ecology. These priority questions and themes serve as a roadmap for advancing applied seascape ecology during, and beyond, the UN Decade of Ocean Science for Sustainable Development (2021-2030)

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
    corecore