369 research outputs found

    Mechanical Engineering Design Project report: Enabler control systems

    Get PDF
    The Controls Group was assigned the responsibility for designing the Enabler's control system. The requirement for the design was that the control system must provide a simple user interface to control the boom articulation joints, chassis articulation joints, and the wheel drive. The system required controlling hydraulic motors on the Enabler by implementing 8-bit microprocessor boards. In addition, feedback to evaluate positions and velocities must be interfaced to provide the operator with confirmation as well as control

    Development of a Thin-Film Solar Cell Interconnect for the Powersphere Concept

    Get PDF
    Dual junction amorphous silicon (a-Si) solar cells produced on polyimide substrate have been selected as the best candidate to produce a lightweight solar array for the PowerSphere program. The PowerSphere concept features a space-inflatable, geodetic solar array approximately 0.6 meters in diameter and capable of generating about 20W of electrical power. Trade studies of various wiring concepts and connection methods led to an interconnect design with a copper contact that wraps around the edge, to the back of the solar cell. Applying Plasma Vapor Deposited (PVD) copper film to both sides and the edge of the solar cell produces the wrap around contact. This procedure results in a contact pad on the back of the solar cell, which is then laser welded to a flex circuit material. The flex circuit is constructed of copper in a custom designed routing pattern, and then sandwiched in a Kapton insulation layer. The flex circuit then serves as the primary power distribution system between the solar cells and the spacecraft. Flex circuit material is the best candidate for the wiring harness because it allows for low force deployment of the solar cells by the inflatable hinges on the PowerSphere. An additional frame structure, fabricated and assembled by ILC Dover, will reinforce the wrap around contact-flex blanket connection, thus providing a mechanically robust solar cell interconnect for the PowerSphere multifunctional program. The PowerSphere team will use the wraparound contact design approach as the primary solution for solar cell integration and the flex blanket for power distribution

    Multifunctional Deployment Hinges Rigidified by Ultraviolet

    Get PDF
    Multifunctional hinges have been developed for deploying and electrically connecting panels comprising planar arrays of thin-film solar photovoltaic cells. In the original intended application of these hinges, the panels would be facets of a 32-sided (and approximately spherical) polyhedral microsatellite (see figure), denoted a PowerSphere, that would be delivered to orbit in a compact folded configuration, then deployed by expansion of gas in inflation bladders. Once deployment was complete, the hinges would be rigidified to provide structural connections that would hold the panels in their assigned relative positions without backlash. Such hinges could also be used on Earth for electrically connecting and structurally supporting solar panels that are similarly shipped in compact form and deployed at their destinations. As shown in section A-A in the figure, a hinge of this type is partly integrated with an inflation bladder and partly integrated with the frame of a solar panel. During assembly of the hinge, strip extensions from a flexible circuit harness on the bladder are connected to corresponding thin-film conductors on the solar panel by use of laser welding and wrap-around contacts. The main structural component of the hinge is a layer of glass fiber impregnated with an ultraviolet-curable resin. After deployment, exposure to ultraviolet light from the Sun cures the resin, thereby rigidifying the hinge

    Thermal Cycle Testing of the Powersphere Engineering Development Unit

    Get PDF
    During the past three years the team of The Aerospace Corporation, Lockheed Martin Space Systems, NASA Glenn Research Center, and ILC Dover LP have been developing a multifunctional inflatable structure for the PowerSphere concept under contract with NASA (NAS3-01115). The PowerSphere attitude insensitive solar power-generating microsatellite, which could be used for many different space and Earth science purposes, is ready for further refinement and flight demonstration. The development of micro- and nanosatellites requires the energy collection system, namely the solar array, to be of lightweight and small size. The limited surface area of these satellites precludes the possibility of body mounting the solar array system for required power generation. The use of large traditional solar arrays requires the support of large satellite volumes and weight and also requires a pointing apparatus. The current PowerSphere concept (geodetic sphere), which was envisioned in the late 1990 s by Mr. Simburger of The Aerospace Corporation, has been systematically developed in the past several years.1-7 The PowerSphere system is a low mass and low volume system suited for micro and nanosatellites. It is a lightweight solar array that is spherical in shape and does not require a pointing apparatus. The recently completed project culminated during the third year with the manufacturing of the PowerSphere Engineering Development Unit (EDU). One hemisphere of the EDU system was tested for packing and deployment and was subsequently rigidized. The other hemisphere was packed and stored for future testing in an uncured state. Both cured and uncured hemisphere components were delivered to NASA Glenn Research Center for thermal cycle testing and long-term storage respectively. This paper will discuss the design, thermal cycle testing of the PowerSphere EDU

    NSC23925, Identified in a High-Throughput Cell-Based Screen, Reverses Multidrug Resistance

    Get PDF
    Multidrug resistance (MDR) is a major factor which contributes to the failure of cancer chemotherapy, and numerous efforts have been attempted to overcome MDR. To date, none of these attempts have yielded a tolerable and effective therapy to reverse MDR; thus, identification of new agents would be useful both clinically and scientifically.To identify small molecule compounds that can reverse chemoresistance, we developed a 96-well plate high-throughput cell-based screening assay in a paclitaxel resistant ovarian cancer cell line. Coincubating cells with a sublethal concentration of paclitaxel in combination with each of 2,000 small molecule compounds from the National Cancer Institute Diversity Set Library, we identified a previously uncharacterized molecule, NSC23925, that inhibits Pgp1 and reverses MDR1 (Pgp1) but does not inhibit MRP or BCRP-mediated MDR. The cytotoxic activity of NSC23925 was further evaluated using a panel of cancer cell lines expressing Pgp1, MRP, and BCRP. We found that at a concentration of >10 microM NSC23925 moderately inhibits the proliferation of both sensitive and resistant cell lines with almost equal activity, but its inhibitory effect was not altered by co-incubation with the Pgp1 inhibitor, verapamil, suggesting that NSC23925 itself is not a substrate of Pgp1. Additionally, NSC23925 increases the intracellular accumulation of Pgp1 substrates: calcein AM, Rhodamine-123, paclitaxel, mitoxantrone, and doxorubicin. Interestingly, we further observed that, although NSC23925 directly inhibits the function of Pgp1 in a dose-dependent manner without altering the total expression level of Pgp1, NSC23925 actually stimulates ATPase activity of Pgp, a phenomenon seen in other Pgp inhibitors.The ability of NSC23925 to restore sensitivity to the cytotoxic effects of chemotherapy or to prevent resistance could significantly benefit cancer patients

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation

    Get PDF
    One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced. Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI

    Search for stop and higgsino production using diphoton Higgs boson decays

    Get PDF
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top-quark (stop) and the Higgs boson (higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7 inverse femtobarns of proton-proton collision data at sqrt(s) = 8 TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the stop mass below 360 to 410 GeV, depending on the higgsino mass
    corecore