416 research outputs found

    Mutual influence of structural distortion and superconductivity in systems with degenerate bands

    Full text link
    The interplay between the band Jahn-Teller distortion and the superconductivity is studied for the system whose Fermi level lies in two-fold degenerate band. Assuming that the lattice distortion is coupled to the orbital electron density and the superconductivity arises due to BCS pairing mechanism between the electrons, the phase diagram is obtained for different doping with respect to half-filled band situation. The coexistence phase of superconductivity and distortion occurs within limited range of doping and the distortion lowers the superconducting transition temperature TcT_c. In presence of strong electron-lattice interaction the lattice strain is found to be maximum at half-filling and superconductivity does not appear for low doping. The maximum value of TcT_c obtainable for an optimum doping is limited by the structural transition temperature TsT_s. The growth of distortion is arrested with the onset of superconductivity and the distortion is found to disappear at lower temperature for some hole density. Such arresting of the growth of distortion at TcT_c produces discontinuous jump in thermal expansion coefficient. The variation of strain with temperature as well as with doping, thermal expansion coefficient, the TcT_c vs δ\delta behaviour are in qualitative agreement with recent experimental observations on interplay of distortion and superconductivity in cuprates.Comment: 15 pages Revtex style, 9 figures available on request to first Autho

    Electronic theory for the normal state spin dynamics in Sr2_2RuO4_4: anisotropy due to spin-orbit coupling

    Full text link
    Using a three-band Hubbard Hamiltonian we calculate within the random-phase-approximation the spin susceptibility, χ(q,ω)\chi({\bf q},\omega), and NMR spin-lattice relaxation rate, 1/T1_1, in the normal state of the triplet superconductor Sr2_2RuO4_4 and obtain quantitative agreement with experimental data. Most importantly, we find that due to spin-orbit coupling the out-of-plane component of the spin susceptibility χzz\chi^{zz} becomes at low temperatures two times larger than the in-plane one. As a consequence strong incommensurate antiferromagnetic fluctuations of the quasi-one-dimensional xzxz- and yzyz-bands point into the zz-direction. Our results provide further evidence for the importance of spin fluctuations for triplet superconductivity in Sr2_2RuO4_4.Comment: revised versio

    Update on biomarkers in neuromyelitis optica

    Get PDF
    Neuromyelitis optica (NMO) (and NMO spectrum disorder) is an autoimmune inflammatory disease of the CNS primarily affecting spinal cord and optic nerves. Reliable and sensitive biomarkers for onset, relapse, and progression in NMO are urgently needed because of the heterogeneous clinical presentation, severity of neurologic disability following relapses, and variability of therapeutic response. Detecting aquaporin-4 (AQP4) antibodies (AQP4-IgG or NMO-IgG) in serum supports the diagnosis of seropositive NMO. However, whether AQP4-IgG levels correlate with disease activity, severity, response to therapy, or long-term outcomes is unclear. Moreover, biomarkers for patients with seronegative NMO have yet to be defined and validated. Collaborative international studies hold great promise for establishing and validating biomarkers that are useful in therapeutic trials and clinical management. In this review, we discuss known and potential biomarkers for NMO

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    International delphi consensus on the management of AQP4-IgG+ NMOSD: recommendations for eculizumab, inebilizumab, and satralizumab

    Get PDF
    BACKGROUND AND OBJECTIVES: Neuromyelitis optica spectrum disorder (NMOSD) is a rare debilitating autoimmune disease of the CNS. Three monoclonal antibodies were recently approved as maintenance therapies for aquaporin-4 immunoglobulin G (AQP4-IgG)-seropositive NMOSD (eculizumab, inebilizumab, and satralizumab), prompting the need to consider best practice therapeutic decision-making for this indication. Our objective was to develop validated statements for the management of AQP4-IgG-seropositive NMOSD, through an evidence-based Delphi consensus process, with a focus on recommendations for eculizumab, inebilizumab, and satralizumab. METHODS: We recruited an international panel of clinical experts in NMOSD and asked them to complete a questionnaire on NMOSD management. Panel members received a summary of evidence identified through a targeted literature review and provided free-text responses to the questionnaire based on both the data provided and their clinical experience. Responses were used to generate draft statements on NMOSD-related themes. Statements were voted on over a maximum of 3 rounds; participation in at least 1 of the first 2 rounds was mandatory. Panel members anonymously provided their level of agreement (6-point Likert scale) on each statement. Statements that failed to reach a predefined consensus threshold (≥67%) were revised based on feedback and then voted on in the next round. Final statements were those that met the consensus threshold (≥67%). RESULTS: The Delphi panel comprised 24 experts, who completed the Delphi process in November 2021 after 2 voting rounds. In round 1, 23/25 statements reached consensus and were accepted as final. The 2 statements that failed to reach consensus were revised. In round 2, both revised statements reached consensus. Twenty-five statements were agreed in total: 11 on initiation of or switching between eculizumab, inebilizumab, and satralizumab; 3 on monotherapy/combination therapy; 7 on safety and patient population considerations; 3 on biomarkers/patient-reported outcomes; and 1 on research gaps. DISCUSSION: An established consensus method was used to develop statements relevant to the management of AQP4-IgG-seropositive NMOSD. These international statements will be valuable for informing individualized therapeutic decision-making and could form the basis for standardized practice guidelines

    Treatment and outcome of aquaporin-4 antibody-positive NMOSD: A multinational pediatric study

    Get PDF
    Objective To describe the clinical phenotypes, treatment response, and outcome of children with antibodies against aquaporin-4 (AQP4-Ab) neuromyelitis optica spectrum disorder (NMOSD). Methods Retrospective, multicenter, and multinational study of patients with AQP4-Ab NMOSD aged <18 years at disease onset from a center in Brazil and 13 European centers. Data on demographics, clinical findings, and laboratory results were analyzed; calculation of annualized relapse rates (ARRs) pre- and on-treatment with disease-modifying therapies (DMTs) and of ORs for predictors of poor outcome was performed. Results A total of 67 children were identified. At last follow-up (median 4 years, interquartile range 2–10 years), 37/67(57.8%) were found to have permanent disability. A more severe disease course was seen in the non-White ethnicity with both a shorter time to first relapse (p = 0.049) and a worse Expanded Disability Status Scale score at last follow-up (p = 0.008). The median ARR on treatment was 0.18 on azathioprine (n = 39, range 0–4), 0 on mycophenolate mofetil (n = 18, range 0–3), and 0 on rituximab (n = 29, range 0–2). No patient treated with rituximab as first-line therapy relapsed. Optic neuritis at onset was associated with a poor visual outcome below 20/200 (OR 8.669, 95% CI 1.764–42.616, p = 0.008), and a younger age at onset was associated with cognitive impairment (OR 0.786, 95% CI 0.644–0.959, p = 0.018). Conclusions AQP4-Ab NMOSD in children is an aggressive disease with permanent disabilities observed in over half the cohort. All DMTs were associated with a reduction of ARR. First-line rituximab prevented further clinical relapses. International consensus on treatment protocols for children is required to reduce heterogeneity of treatment regimens used worldwide. Classification of evidence This study provides Class IV evidence that for children with AQP4-Ab NMOSD, all DMTs, particularly first-line rituximab, reduced the ARR and prevented further clinical relapses

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions
    corecore