94 research outputs found

    A method for visualising fluorescence of flavonoid therapeutics in vivo in the model eukaryote Dictyostelium discoideum

    Get PDF
    Naturstoff reagent A (diphenylboric acid 2-aminoethyl ester, DPBA) has been used historically in plant science to observe polyphenolic pigments, such as flavonoids, whose fluorescence requires enhancement to be visible by microscopy. Flavonoids are common dietary constituents and are the focus of considerable attention because of their potential as novel therapies for numerous diseases. The molecular basis of therapeutic activity is only gradually being established, and one strand of such research is making use of the social amoeba Dictyostelium discoideum. We extended the application of DPBA to flavonoid imaging in these preclinical studies and report the first method for use of DPBA in this eukaryotic model microbe, and its applicability alongside subcellular markers. This in vivo fluorescence imaging provided a useful adjunct to parallel chemical and genetic studies

    An efficient antioxidant system and heavy metal exclusion from leaves make Solanum cheesmaniae more tolerant to Cu than its cultivated counterpart

    Get PDF
    Copper (Cu) is an abundant metal in the environment coming from anthropogenic activities and natural sources that, in excess, easily becomes phytotoxic to most species, being its accumulation in plants considered an environmental threat. This study aimed to compare the physiological and molecular responses of Solanum lycopersicum and its wild counterpart Solanum cheesmaniae to Cu stress. In particular, we wanted to address the hypothesis that S. cheesmaniae is more adapted to Cu stress than S. lycopersicum, since the former is equipped with a more efficient antioxidant defense system than the latter. Biomarkers of oxidative status (lipid peroxidation, hydrogen peroxide (H2O2) and superoxide anion (O.− 2 ) levels) revealed a more pronounced imbalance in the redox homeostasis in shoots of S. lycopersicum than in S. cheesmaniae in response to Cu. Furthermore, the activity of key antioxidant enzymes clearly differed in both species in response to Cu. Catalase (CAT) activity increased in S. cheesmaniae shoots but decreased in the domestic species, as well as ascorbate peroxidase (APX). Both species preferentially accumulated Cu in the radicular system, although a great increase in the aerial parts of S. lycopersicum was measured, while in leaves of Cu- treated S. cheesmaniae, the levels of Cu were not changed. Overall, results validated the hypothesis that S. cheesmaniae is more tolerant to excess Cu than S. lycopersicum and the data provided will help the development of breeding strategies toward the improvement of the resistance/tolerance of cultivated tomato species to heavy metal stress.This research was partially supported by national funds provided by Foundation for Science and Technology (FCT) through PEst-OE/BIA/UI4046/2014 (FCT through BioISI) and through the research project PTDC/ AGR-PRO/7028/2014.info:eu-repo/semantics/publishedVersio

    Sphingomyelin Functions as a Novel Receptor for Helicobacter pylori VacA

    Get PDF
    The vacuolating cytotoxin (VacA) of the gastric pathogen Helicobacter pylori binds and enters epithelial cells, ultimately resulting in cellular vacuolation. Several host factors have been reported to be important for VacA function, but none of these have been demonstrated to be essential for toxin binding to the plasma membrane. Thus, the identity of cell surface receptors critical for both toxin binding and function has remained elusive. Here, we identify VacA as the first bacterial virulence factor that exploits the important plasma membrane sphingolipid, sphingomyelin (SM), as a cellular receptor. Depletion of plasma membrane SM with sphingomyelinase inhibited VacA-mediated vacuolation and significantly reduced the sensitivity of HeLa cells, as well as several other cell lines, to VacA. Further analysis revealed that SM is critical for VacA interactions with the plasma membrane. Restoring plasma membrane SM in cells previously depleted of SM was sufficient to rescue both toxin vacuolation activity and plasma membrane binding. VacA association with detergent-resistant membranes was inhibited in cells pretreated with SMase C, indicating the importance of SM for VacA association with lipid raft microdomains. Finally, VacA bound to SM in an in vitro ELISA assay in a manner competitively inhibited by lysenin, a known SM-binding protein. Our results suggest a model where VacA may exploit the capacity of SM to preferentially partition into lipid rafts in order to access the raft-associated cellular machinery previously shown to be required for toxin entry into host cells

    Subcellular localization and tissue specific expression of amidase 1 from Arabidopsis thaliana

    Get PDF
    Amidase 1 (AMI1) from Arabidopsis thaliana converts indole-3-acetamide (IAM), into indole-3-acetic acid (IAA). AMI1 is part of a small isogene family comprising seven members in A. thaliana encoding proteins which share a conserved glycine- and serine-rich amidase-signature. One member of this family has been characterized as an N-acylethanolamine-cleaving fatty acid amidohydrolase (FAAH) and two other members are part of the preprotein translocon of the outer envelope of chloroplasts (Toc complex) or mitochondria (Tom complex) and presumably lack enzymatic activity. Among the hitherto characterized proteins of this family, AMI1 is the only member with indole-3-acetamide hydrolase activity, and IAM is the preferred substrate while N-acylethanolamines and oleamide are not hydrolyzed significantly, thus suggesting a role of AMI1 in auxin biosynthesis. Whereas the enzymatic function of AMI1 has been determined in vitro, the subcellular localization of the enzyme remained unclear. By using different GFP-fusion constructs and an A. thaliana transient expression system, we show a cytoplasmic localization of AMI1. In addition, RT-PCR and anti-amidase antisera were used to examine tissue specific expression of AMI1 at the transcriptional and translational level, respectively. AMI1-expression is strongest in places of highest IAA content in the plant. Thus, it is concluded that AMI1 may be involved in de novo IAA synthesis in A. thaliana

    Segregation of Fluorescent Membrane Lipids into Distinct Micrometric Domains: Evidence for Phase Compartmentation of Natural Lipids?

    Get PDF
    Background: We recently reported that sphingomyelin (SM) analogs substituted on the alkyl chain by various fluorophores (e.g. BODIPY) readily inserted at trace levels into the plasma membrane of living erythrocytes or CHO cells and spontaneously concentrated into micrometric domains. Despite sharing the same fluorescent ceramide backbone, BODIPY-SM domains segregated from similar domains labelled by BODIPY-D-e-lactosylceramide (D-e-LacCer) and depended on endogenous SM. Methodology/Principal Findings. We show here that BODIPY-SM further differed from BODIPY-D-e-LacCer or -glucosylceramide (GlcCer) domains in temperature dependence, propensity to excimer formation, association with a glycosylphosphatidylinositol (GPI)-anchored fluorescent protein reporter, and lateral diffusion by FRAP, thus demonstrating different lipid phases and boundaries. Whereas BODIPY-D-e-LacCer behaved like BODIPY-GlcCer, its artificial stereoisomer, BODIPY-L-t-LacCer, behaved like BODIPY- and NBD-phosphatidylcholine (PC). Surprisingly, these two PC analogs also formed micrometric patches yet preferably at low temperature, did not show excimer, never associated with the GPI reporter and showed major restriction to lateral diffusion when photobleached in large fields. This functional comparison supported a three-phase micrometric compartmentation, of decreasing order: BODIPY-GSLs > -SM > -PC (or artificial L-t-LacCer). Co-existence of three segregated compartments was further supported by double labelling experiments and was confirmed by additive occupancy, up to ~70% cell surface coverage. Specific alterations of BODIPY-analogs domains by manipulation of corresponding endogenous sphingolipids suggested that distinct fluorescent lipid partition might reflect differential intrinsic propensity of endogenous membrane lipids to form large assemblies. Conclusions/Significance. We conclude that fluorescent membrane lipids spontaneously concentrate into distinct micrometric assemblies. We hypothesize that these might reflect preexisting compartmentation of endogenous PM lipids into non-overlapping domains of differential order: GSLs > SM > PC, resulting into differential self-adhesion of the two former, with exclusion of the latter

    The Response of the Prostate to Circulating Cholesterol: Activating Transcription Factor 3 (ATF3) as a Prominent Node in a Cholesterol-Sensing Network

    Get PDF
    Elevated circulating cholesterol is a systemic risk factor for cardiovascular disease and metabolic syndrome, however the manner in which the normal prostate responds to variations in cholesterol levels is poorly understood. In this study we addressed the molecular and cellular effects of elevated and suppressed levels of circulating cholesterol on the normal prostate. Integrated bioinformatic analysis was performed using DNA microarray data from two experimental formats: (1) ventral prostate from male mice with chronically elevated circulating cholesterol and (2) human prostate cells exposed acutely to cholesterol depletion. A cholesterol-sensitive gene expression network was constructed from these data and the transcription factor ATF3 was identified as a prominent node in the network. Validation experiments confirmed that elevated cholesterol reduced ATF3 expression and enhanced proliferation of prostate cells, while cholesterol depletion increased ATF3 levels and inhibited proliferation. Cholesterol reduction in vivo alleviated dense lymphomononuclear infiltrates in the periprostatic adipose tissue, which were closely associated with nerve tracts and blood vessels. These findings open new perspectives on the role of cholesterol in prostate health, and provide a novel role for ATF3, and associated proteins within a large signaling network, as a cholesterol-sensing mechanism

    The tuberculosis necrotizing toxin kills macrophages by hydrolyzing NAD.

    Get PDF
    Mycobacterium tuberculosis (Mtb) induces necrosis of infected cells to evade immune responses. Recently, we found that Mtb uses the protein CpnT to kill human macrophages by secreting its C-terminal domain, named tuberculosis necrotizing toxin (TNT), which induces necrosis by an unknown mechanism. Here we show that TNT gains access to the cytosol of Mtb-infected macrophages, where it hydrolyzes the essential coenzyme NAD(+). Expression or injection of a noncatalytic TNT mutant showed no cytotoxicity in macrophages or in zebrafish zygotes, respectively, thus demonstrating that the NAD(+) glycohydrolase activity is required for TNT-induced cell death. To prevent self-poisoning, Mtb produces an immunity factor for TNT (IFT) that binds TNT and inhibits its activity. The crystal structure of the TNT-IFT complex revealed a new NAD(+) glycohydrolase fold of TNT, the founding member of a toxin family widespread in pathogenic microorganisms

    The Creation and Physiological Relevance of Divergent Hydroxylation Patterns in the Flavonoid Pathway

    Get PDF
    Flavonoids and biochemically-related chalcones are important secondary metabolites, which are ubiquitously present in plants and therefore also in human food. They fulfill a broad range of physiological functions in planta and there are numerous reports about their physiological relevance for humans. Flavonoids have in common a basic C6-C3-C6 skeleton structure consisting of two aromatic rings (A and B) and a heterocyclic ring (C) containing one oxygen atom, whereas chalcones, as the intermediates in the formation of flavonoids, have not yet established the heterocyclic C-ring. Flavonoids are grouped into eight different classes, according to the oxidative status of the C-ring. The large number of divergent chalcones and flavonoid structures is from the extensive modification of the basic molecules. The hydroxylation pattern influences physiological properties such as light absorption and antioxidative activity, which is the base for many beneficial health effects of flavonoids. In some cases antiinfective properties are also effected

    Managing Phenol Contents in Crop Plants by Phytochemical Farming and Breeding—Visions and Constraints

    Get PDF
    Two main fields of interest form the background of actual demand for optimized levels of phenolic compounds in crop plants. These are human health and plant resistance to pathogens and to biotic and abiotic stress factors. A survey of agricultural technologies influencing the biosynthesis and accumulation of phenolic compounds in crop plants is presented, including observations on the effects of light, temperature, mineral nutrition, water management, grafting, elevated atmospheric CO2, growth and differentiation of the plant and application of elicitors, stimulating agents and plant activators. The underlying mechanisms are discussed with respect to carbohydrate availability, trade-offs to competing demands as well as to regulatory elements. Outlines are given for genetic engineering and plant breeding. Constraints and possible physiological feedbacks are considered for successful and sustainable application of agricultural techniques with respect to management of plant phenol profiles and concentrations
    corecore