26 research outputs found

    Dendritic cells and Cryptosporidium: From recognition to restriction

    Get PDF
    Host immune responses are required for the efficient control of cryptosporidiosis. Immunity agains

    Childhood tuberculosis is associated with decreased abundance of T cell gene transcripts and impaired T cell function

    Get PDF
    The WHO estimates around a million children contract tuberculosis (TB) annually with over 80 000 deaths from dissemination of infection outside of the lungs. The insidious onset and association with skin test anergy suggests failure of the immune system to both recognise and respond to infection. To understand the immune mechanisms, we studied genome-wide whole blood RNA expression in children with TB meningitis (TBM). Findings were validated in a second cohort of children with TBM and pulmonary TB (PTB), and functional T-cell responses studied in a third cohort of children with TBM, other extrapulmonary TB (EPTB) and PTB. The predominant RNA transcriptional response in children with TBM was decreased abundance of multiple genes, with 140/204 (68%) of all differentially regulated genes showing reduced abundance compared to healthy controls. Findings were validated in a second cohort with concordance of the direction of differential expression in both TBM (r2 = 0.78 p = 2x10-16) and PTB patients (r2 = 0.71 p = 2x10-16) when compared to a second group of healthy controls. Although the direction of expression of these significant genes was similar in the PTB patients, the magnitude of differential transcript abundance was less in PTB than in TBM. The majority of genes were involved in activation of leucocytes (p = 2.67E-11) and T-cell receptor signalling (p = 6.56E-07). Less abundant gene expression in immune cells was associated with a functional defect in T-cell proliferation that recovered after full TB treatment (p<0.0003). Multiple genes involved in T-cell activation show decreased abundance in children with acute TB, who also have impaired functional T-cell responses. Our data suggest that childhood TB is associated with an acquired immune defect, potentially resulting in failure to contain the pathogen. Elucidation of the mechanism causing the immune paresis may identify new treatment and prevention strategies

    Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases

    Get PDF
    textabstractThe classical paradigm of tuberculosis (TB) immunity, with a central protective role for Th1 responses and IFN-γ-stimulated cellular responses, has been challenged by unsatisfactory results of vaccine strategies aimed at enhancing Th1 immunity. Moreover, preclinical TB models have shown that increasing IFN-γ responses in the lungs is more damaging to the host than to the pathogen. Type 1 interferon signaling and altered Th17 responses have also been associated with active TB, but their functional roles in TB pathogenesis remain to be established. These two host responses have been studied in more detail in autoimmune diseases (AID) and show functional interactions that are of potential interest in TB immunity. In this review, we first identify the role of type 1 interferons and Th17 immunity in TB, followed by an overview of interactions between these responses observed in systemic AID. We discuss (i) the effects of GM-CSF-secreting Th17.1 cells and type 1 interferons on CCR2+ monocytes; (ii) convergence of IL-17 and type 1 interferon signaling on stimulating B-cell activating factor production and the central role of neutrophils in this process; and (iii) synergy between IL-17 and type 1 interferons in the generation and function of tertiary lymphoid structures and the associated follicular helper T-cell responses. Evaluation of these autoimmune-related pathways in TB pathogenesis provides a new perspective on recent developments in TB research

    The role of host genetic factors in respiratory tract infectious diseases:systematic review, meta-analyses and field synopsis

    Get PDF
    Host genetic factors have frequently been implicated in respiratory infectious diseases, often with inconsistent results in replication studies. We identified 386 studies from the total of 24,823 studies identified in a systematic search of four bibliographic databases. We performed meta-analyses of studies on tuberculosis, influenza, respiratory syncytial virus, SARS-Coronavirus and pneumonia. One single-nucleotide polymorphism from IL4 gene was significant for pooled respiratory infections (rs2070874; 1.66 [1.29-2.14]). We also detected an association of TLR2 gene with tuberculosis (rs5743708; 3.19 [2.03-5.02]). Subset analyses identified CCL2 as an additional risk factor for tuberculosis (rs1024611; OR = 0.79 [0.72-0.88]). The IL4-TLR2-CCL2 axis could be a highly interesting target for translation towards clinical use. However, this conclusion is based on low credibility of evidence - almost 95% of all identified studies had strong risk of bias or confounding. Future studies must build upon larger-scale collaborations, but also strictly adhere to the highest evidence-based principles in study design, in order to reduce research waste and provide clinically translatable evidenc

    Secretory Microneme Proteins Induce T-Cell Recall Responses in Mice Chronically Infected with Toxoplasma gondii

    Get PDF
    Current diagnosis of toxoplasmosis relies almost exclusively on antibody detection, and while detection of IgG provides a useful estimate of prior infection, it does not alone indicate immune status. In contrast, detection of IFN-γ responses to T. gondii antigens has been used to monitor immune responsiveness in HIV-infected patients, thus providing valuable predictions about the potential for disease reactivation. However, specific T. gondii antigens that can be used in assays to detect cellular immunity remain largely undefined. In this study, we examined the diagnostic potential of microneme antigens of T. gondii using IFN-γ detection assays. Our findings demonstrate that MIC antigens (MIC1, MIC3, MIC4, and MIC6) elicit IFN-γ responses from memory T cells in chronically infected mice. Monitoring IFN-γ production by T cells stimulated with MIC antigens provided high sensitivity and specificity for detection of T. gondii infection in mice. Taken together, these studies suggest that microneme antigens might be useful as an adjunct to serological testing to monitor immune status during infection.Microneme (MIC) proteins play important roles in the recognition, adhesion, and invasion of host cells by Toxoplasma gondii. Previous studies have shown that MIC proteins are highly immunogenic in the mouse and recognized by human serum antibodies. Here we report that T. gondii antigens MIC1, MIC3, MIC4, and MIC6 were capable of inducing memory responses leading to production of gamma interferon (IFN-γ) by T cells from T. gondii-infected mice. Production of IFN-γ was demonstrated using enzyme-linked immunosorbent spot (ELISPOT) assay and also intracellular cytokine staining. All four MIC antigens displayed very high sensitivity (100%) and specificity (86 to 100%) for detecting chronic infection. Interestingly, IFN-γ was produced by both CD4+ and CD8+ T cells in BALB/c mice but primarily by CD4+ T cells in C57BL/6 mice. Phenotypic characterization of IFN-γ-producing CD4+ and CD8+ T cells in BALB/c mice and CD4+ T cells in C57BL/6 mice revealed effector memory T cells (CD44hi CD62Llo) as the predominant cells that contributed to IFN-γ production in response to MIC antigens. Effector memory responses were seen in mice of different major histocompatibility complex class II (MHC-II) haplotypes, suggesting that MIC antigens contain epitopes that are broadly recognized

    Cell wall-associated Mycobacterium tuberculosis rRv3083 protein stimulates macrophages through toll-like receptor-2 (TLR2)

    Get PDF
    Aims and objectives: Characterization of proteins associated with the mycobacterial cell wall is critical to understanding bacterial survival and immune modulation in the host. A variety of mycobacterial products are able to recognize and activate mammalian toll-like receptors (TLRs) mediating the secretion of antibacterial effector molecules. Mycobacterium tuberculosis MymA Rv3083 protein is a cell wall-associated protein which is up-regulated upon infection of macrophages. The objective of the present study is to understand the role of Rv3083 protein as a TLR agonist and its contribution in activating macrophages. Methods: The MymA (Rv3083) gene was cloned and expressed. The purified 55.5kDa recombinant protein was used to stimulate phorbol myristate acetate (PMA) differentiated THP-1 macrophage cell line. Cell surface markers of Rv3083 stimulated THP-1 cells were done using flow cytometry for TLR2, TLR4, HLA-DR and co-stimulatory molecules CD40, CD64 and CD80. Cytokines TNF-α, IL-10 and IL-12 were assayed in the culture supernatant using ELISA. Results: Stimulation of THP-1 macrophages for 48 and 72 h with rRv3083 protein resulted in significantly increased expression of TLR2. A significant up-regulation was also seen in the expression of co-stimulatory molecules CD40, CD80 and antigen-presenting molecule HLA-DR on THP-1 cells. These macrophages also produced a significant quantity of proinflammatory TH1 cytokines TNF-α and IL-12, but not IL-10 at 48 and 72 h post-stimulation. Conclusion: The cell wall-associated M. tuberculosis rRv3083 protein acts as an agonist of TLR2 and thereby activates macrophages to produce a TH1 immune response. Acknowledgements: The financial support of OSDD-CSIR and the research fellowships of ICMR to I. Saraav and S. Singh is duly acknowledged

    Chronic Toxoplasma gondii infection enhances susceptibility to colitis

    No full text
    Oral infection with Toxoplasma gondii results in dysbiosis and enteritis, both of which revert to normal during chronic infection. However, whether infection leaves a lasting impact on mucosal responses remains uncertain. Here we examined the effect of the chemical irritant dextran sodium sulfate (DSS) on intestinal damage and wound healing in chronically infected mice. Our findings indicate that prior infection with T. gondii exacerbates damage to the colon caused by DSS and impairs wound healing by suppressing stem cell regeneration of the epithelium. Enhanced tissue damage was attributable to inflammatory monocytes that emerge preactivated from bone marrow, migrate to the intestine, and release inflammatory mediators, including nitric oxide. Tissue damage was reversed by neutralization of inflammatory monocytes or nitric oxide, revealing a causal mechanism for tissue damage. Our findings suggest that chronic infection with T. gondii enhances monocyte activation to increase inflammation associated with a secondary environmental insult
    corecore