139 research outputs found

    Regression modeling of the North East Atlantic Spring Bloom suggests previously unrecognized biological roles for V and Mo

    Get PDF
    In order to identify the biogeochemical parameters controlling pCO(2), total chlorophyll a, and dimethyl sulfide (DMS) concentrations during the North East Atlantic Spring Bloom (NASB), we used previously unpublished particulate and dissolved elemental concentrations to construct several linear regression models; first by hypothesis testing, and then with exhaustive stepwise linear regression followed by leave-one-out cross-validation. The field data was obtained along a latitudinal transect from the Azores Islands to the North Atlantic, and best-fit models (determined by lowest predictive error) of up to three variables are presented. Total chlorophyll a is predicted best by biomass (POC, PON) parameters and by pigments characteristic of picophytoplankton for the southern section of the sampling transect (from the Azores to the Rockhall-Hatton Plateau) and coccolithophores in the northern portion (from the Rockhall-Hatton Plateau to the Denmark Strait). Both the pCO(2) and DMS models included variables traditionally associated with the development of the NASB such as mixed layer depth and with Fe, Si, and P-deplete conditions (dissolved Fe, dissolved and biogenic silica, dissolved PO43-). However, the regressions for pCO(2) and DMS also include intracellular V and Mo concentrations, respectively. Mo is involved in DMS production as a cofactor in dimethylsulfoxide reductase. No significant biological role for V has yet been determined, although intracellular V is significantly correlated (p-value \u3c 0.05) with biogenic silica (R-2 = 0.72) and total chlorophyll a (R-2 = 0.49) while the same is not true for its biogeochemical analogue Mo, suggesting active uptake of V by phytoplankton. Our statistical analysis suggests these two lesser studied metals may play more important roles in bloom dynamics than previously thought, and highlights a need for studies focused on determining their potential biological requirements and cell quotas

    Vanadium speciation and cycling in coastal waters

    Get PDF
    Different chemical species of dissolved vanadium, V (IV) and V (V), were measured in the water column of the Long Island Sound (LIS). from the East River to the Atlantic boundary during spring and summer conditions. Our preliminary results showed seasonal and spatial changes in total dissolved V and its redox speciation along LIS. Levels of both V species were high in summer (V (IV), 2.2 +/- 1.7 nM; V (V), 22.4 +/- 3.9 nM), and low in spring (V (IV), 1.4 +/- 1.4 nM; V (V), 11.1 +/- 2.6 nM). A V-salinity mixing plot suggests a non-conservative behavior of total dissolved V (and V (IV)) during estuarine mixing. Dissolved V (IV) occurred mostly in western LIS, accounting for 15-25% of the total dissolved V pool in summer hypoxic bottom waters of that region. In spring, V (IV) accounted for up to 40% of the total dissolved V pool in western LIS, likely from sewage inputs. Dissolved V (IV) was also measured near the Quinnipiac, Housatonic and Connecticut rivers (accounting for 10-20% of the total dissolved in summer), suggesting a local source of the reduced V (likely desorption from surficial sediments and resuspended particles). A positive trend between V (IV) and large size phytoplankton biomass suggests that levels of reduced V may be influenced by biological activity. (C) 2009 Elsevier B.V. All rights reserved

    Distribution of extracellular flavins in a coastal marine basin and their relationship to redox gradients and microbial community members

    Get PDF
    The flavins (including flavin mononucleotide (FMN) and riboflavin (RF)) are a class of organic compounds synthesized by organisms to assist in critical redox reactions. While known to be secreted extracellularly by some species in laboratory-based cultures, flavin concentrations are largely unreported in the natural environment. Here, we present pore water and water column profiles of extracellular flavins (FMN and RF) and two degradation products (lumiflavin and lumichrome) from a coastal marine basin in the Southern California Bight alongside ancillary geochemical and 16S rRNA microbial community data. Flavins were detectable at picomolar concentrations in the water column (93–300 pM FMN, 14–40 pM RF) and low nanomolar concentrations in pore waters (250–2070 pM FMN, 11–210 pM RF). Elevated pore water flavin concentrations displayed an increasing trend with sediment depth and were significantly correlated with the total dissolved Fe (negative) and Mn (positive) concentrations. Network analysis revealed a positive relationship between flavins and the relative abundance of Dehalococcoidia and the MSBL9 clade of Planctomycetes, indicating possible secretion by members of these lineages. These results suggest that flavins are a common component of the so-called shared extracellular metabolite pool, especially in anoxic marine sediments where they exist at physiologically relevant concentrations for metal oxide reduction

    Patterns of nitrogen fixation along 10°N in the tropical Atlantic

    Get PDF
    Nitrogen fixation supports new production in the oligotrophic oceans and removes dinitrogen and carbon dioxide from mixed layer waters. N‐fixation rates have been estimated in various ways but measurements are still too rare and factors limiting N‐fixation are not yet fully understood. Here we present data from a transect along 10°N through the tropical Atlantic on the Meteor Cruise 55 where N‐fixation rates between 3.7 and 255 ÎŒmol N*m−2*d−1 were recorded. The highest rates occurred off Africa in the eastern tropical North Atlantic (ETNA), and in the Amazon River plume in the West and contributed to 1–12.2% of the N‐demand of primary production. N‐fixation rates correlated with dissolved Fe concentrations, which were 20–280 times greater than the estimated demand. High atmospheric Fe inputs combined with the shallow nutricline make the ETNA a favourable environment for N‐fixers

    Distribution of calcifying and silicifying phytoplankton in relation to environmental and biogeochemical parameters during the late stages of the 2005 North East Atlantic Spring Bloom

    Get PDF
    The late stage of the North East Atlantic (NEA) spring bloom was investigated during June 2005 along a transect section from 45 to 66° N between 15 and 20° W in order to characterize the contribution of siliceous and calcareous phytoplankton groups and describe their distribution in relation to environmental factors. We measured several biogeochemical parameters such as nutrients, surface trace metals, algal pigments, biogenic silica (BSi), particulate inorganic carbon (PIC) or calcium carbonate, particulate organic carbon, nitrogen and phosphorus (POC, PON and POP, respectively), as well as transparent exopolymer particles (TEP). Results were compared with other studies undertaken in this area since the JGOFS NABE program. Characteristics of the spring bloom generally agreed well with the accepted scenario for the development of the autotrophic community. The NEA seasonal diatom bloom was in the late stages when we sampled the area and diatoms were constrained to the northern part of our transect, over the Icelandic Basin (IB) and Icelandic Shelf (IS). Coccolithophores dominated the phytoplankton community, with a large distribution over the Rockall-Hatton Plateau (RHP) and IB. The Porcupine Abyssal Plain (PAP) region at the southern end of our transect was the region with the lowest biomass, as demonstrated by very low Chl<i>a</i> concentrations and a community dominated by picophytoplankton. Early depletion of dissolved silicic acid (DSi) and increased stratification of the surface layer most likely triggered the end of the diatom bloom, leading to coccolithophore dominance. The chronic Si deficiency observed in the NEA could be linked to moderate Fe limitation, which increases the efficiency of the Si pump. TEP closely mirrored the distribution of both biogenic silica at depth and prymnesiophytes in the surface layer suggesting the sedimentation of the diatom bloom in the form of aggregates, but the relative contribution of diatoms and coccolithophores to carbon export in this area still needs to be resolved

    Plutonium in groundwater at the 100K-Area of the U.S. DOE Hanford Site

    Get PDF
    Author Posting. © The Authors, 2004. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Contaminant Hydrology 76 (2005): 167-189, doi:10.1016/j.jconhyd.2004.08.004.We examined the concentration, size distribution, redox state and isotopic composition of plutonium (Pu) in groundwater at the 100K-Area at the US Department of Energys (DOE) Hanford Site. Total concentrations of Pu isotopes were extremely low (10-4 to 10-6 pCi/kg, ≈ 104 to 106 atoms/kg), but measurable for the first time in the 100K-Area wells using mass spectrometric analyses that are much more sensitive than alpha spectroscopy methods used previously. Size fractionation data from two wells suggests that 7-29% of the Pu is associated with colloids, operationally defined here as particles between 1 kDa 0.2 ÎŒm in size. These colloids were collected using a 1 kDa cross-flow ultrafiltration system developed specifically for groundwater actinide studies to include careful controls both in the field and during processing to ensure in-situ geochemical conditions are maintained and size separations can be well characterized. Pu in this colloidal fraction was exclusively in the more reduced Pu(III/IV) form, consistent with the higher affinity of Pu for particle surfaces in the lower oxidation states. While the overall concentrations of Pu were low, the Pu isotopic composition suggests at least two local sources of groundwater Pu, namely local Hanford reactor operations at the 100K-Area, and spent nuclear fuel from the N reactor, which was stored in concrete pools at this site. Differences between this site and the Savannah River Site (SRS) are noted, since groundwater Pu at the F-Area seepage basin at SRS has been found using these same 2 methods, to be characterized by much lower colloidal abundances and higher oxidation states. This difference is not directly attributable to groundwater redox potential or geochemical conditions, but rather the physical-chemical difference in Pu sources, which at SRS appear to be dominated downstream from the seepage basins by decay of 244Cm, resulting in more oxidized forms of 240Pu. There is no clear evidence for colloid facilitated transport of Pu in groundwater at this site, since downstream wells have both an order of magnitude lower concentrations of Pu, but also a lower fractional colloidal distribution.This research was supported under Grant No. DOE DE-FG07-96ER14733 and DE-FG02-03ER63659, Environmental Management Science Program, Office of Science and Technology, Office of Environmental Management, US Department of Energy. The preparation of the manuscript was also supported by China Natural Science Foundation (#49825162)

    Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic

    Get PDF
    The role of iron in enhancing phytoplankton productivity in high nutrient, low chlorophyll oceanic regions was demonstrated first through iron-addition bioassay experiments1 and subsequently confirmed by large-scale iron fertilization experiments2. Iron supply has been hypothesized to limit nitrogen fixation and hence oceanic primary productivity on geological timescales3, providing an alternative to phosphorus as the ultimate limiting nutrient4. Oceanographic observations have been interpreted both to confirm and refute this hypothesis5, 6, but direct experimental evidence is lacking7. We conducted experiments to test this hypothesis during the Meteor 55 cruise to the tropical North Atlantic. This region is rich in diazotrophs8 and strongly impacted by Saharan dust input9. Here we show that community primary productivity was nitrogen-limited, and that nitrogen fixation was co-limited by iron and phosphorus. Saharan dust addition stimulated nitrogen fixation, presumably by supplying both iron and phosphorus10, 11. Our results support the hypothesis that aeolian mineral dust deposition promotes nitrogen fixation in the eastern tropical North Atlantic

    FeCycle: Attempting an iron biogeochemcial budget from a mesoscale SF 6 tracer experiment in unpertutbed low iron waters

    Get PDF
    An improved knowledge of iron biogeochemistry is needed to better understand key controls on the functioning of high-nitrate low-chlorophyll (HNLC) oceanic regions. Iron budgets for HNLC waters have been constructed using data from disparate sources ranging from laboratory algal cultures to ocean physics. In summer 2003 we conducted FeCycle, a 10-day mesoscale tracer release in HNLC waters SE of New Zealand, and measured concurrently all sources (with the exception of aerosol deposition) to, sinks of iron from, and rates of iron recycling within, the surface mixed layer. A pelagic iron budget (timescale of days) indicated that oceanic supply terms (lateral advection and vertical diffusion) were relatively small compared to the main sink (downward particulate export). Remote sensing and terrestrial monitoring reveal 13 dust or wildfire events in Australia, prior to and during FeCycle, one of which may have deposited iron at the study location. However, iron deposition rates cannot be derived from such observations, illustrating the difficulties in closing iron budgets without quantification of episodic atmospheric supply. Despite the threefold uncertainties reported for rates of aerosol deposition (Duce et al., 1991), published atmospheric iron supply for the New Zealand region is ∌50-fold (i.e., 7-to 150-fold) greater than the oceanic iron supply measured in our budget, and thus was comparable (i.e., a third to threefold) to our estimates of downward export of particulate iron. During FeCycle, the fluxes due to short term (hours) biological iron uptake and regeneration were indicative of rapid recycling and were tenfold greater than for new iron (i.e. estimated atmospheric and measured oceanic supply), giving an "fe" ratio (uptake of new iron/ uptake of new + regenerated iron) of 0.17 (i.e., a range of 0.06 to 0.51 due to uncertainties on aerosol iron supply), and an "Fe" ratio (biogenic Fe export/uptake of new + regenerated iron) of 0.09 (i.e., 0.03 to 0.24)

    Evidence for the linked biogeochemical cycling of zinc, cobalt, and phosphorus in the western North Atlantic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB4012, doi:10.1029/2007GB003119.Many trace metals such as iron, copper, and manganese have lower concentrations in the surface waters of the North Pacific Ocean than in North Atlantic surface waters. However, cobalt and zinc concentrations in North Atlantic surface waters are often as low as those reported in the North Pacific. We studied the relationship between the distribution of cobalt, zinc, and phosphorus in surface waters of the western North Atlantic Ocean. Both metals show strong depletion in the southern Sargasso Sea, a region characterized by exceedingly low dissolved inorganic phosphorus (generally <4 nmol L−1) and measurable alkaline phosphatase activity. Alkaline phosphatase is a metalloenzyme (typically containing zinc) that cleaves phosphate monoesters and is a diagnostic indicator of phosphorus stress in phytoplankton. In contrast to the North Pacific Ocean, cobalt and zinc appear to be drawn down to their lowest values only when inorganic phosphorus is below 10 nmol L−1 in the North Atlantic Ocean. Lower levels of phosphorus in the Atlantic may contribute to these differences, possibly through an increased biological demand for zinc and cobalt associated with dissolved organic phosphorus acquisition. This hypothesis is consistent with results of a culture study where alkaline phosphatase activity decreased in the model coccolithophore Emiliania huxleyi upon zinc and cobalt limitation.This research was supported by NSF grant OCE- 0136835 to J.W.M. and S.D. R.W.J. was supported by an EPA STAR Fellowship

    Glacial-interglacial modulation of the marine nitrogen cycle by high-latitude O2 supply to the global thermocline

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA4007, doi:10.1029/2003PA001000.An analysis of sedimentary nitrogen isotope records compiled from widely distributed marine environments emphasizes the global synchrony of denitrification changes and provides evidence for a strong temporal coupling of these variations to changes in nitrogen fixation as previously inferred. We explain the global coherence of these records by a simple physical control on the flux of dissolved oxygen to suboxic zones and the coupling to fixation via the supply of phosphorus to diazotrophs in suitable environments. According to our hypothesis, lower glacial-stage sea surface temperature increased oxygen solubility, while stronger winds in high-latitude regions enhanced the rate of thermocline ventilation. The resultant colder, rapidly flushed thermocline lessened the spatial extent of denitrification and, consequently, N fixation. During warm periods, sluggish circulation of warmer, less oxygen rich thermocline waters caused expansion of denitrification zones and a concomitant increase in N fixation. Local fluctuations in export productivity would have modulated this global signal.Financial support for this work was provided by the Natural Sciences and Engineering Research Council of Canada and by a WHOI postdoctoral fellowship to MK
    • 

    corecore