406 research outputs found

    Hypercalcitoninemia is not Pathognomonic of Medullary Thyroid Carcinoma

    Get PDF
    Hypercalcitoninemia has frequently been reported as a marker for medullary thyroid carcinoma. Currently, calcitonin measurements are mostly useful in the evaluation of tumor size and progression, and as an index of biochemical improvement of medullary thyroid carcinomas. Although measurement of calcitonin is a highly sensitive method for the detection of medullary thyroid carcinoma, it presents a low specificity for this tumor. Several physiologic and pathologic conditions other than medullary thyroid carcinoma have been associated with increased levels of calcitonin. Several cases of thyroid nodules associated with increased values of calcitonin are not medullary thyroid carcinomas, but rather are related to other conditions, such as hypercalcemias, hypergastrinemias, neuroendocrine tumors, renal insufficiency, papillary and follicular thyroid carcinomas, and goiter. Furthermore, prolonged treatment with omeprazole (> 2–4 months), beta-blockers, glucocorticoids and potential secretagogues, have been associated with hypercalcitoninemia. An association between calcitonin levels and chronic auto-immune thyroiditis remains controversial. Patients with calcitonin levels >100 pg/mL have a high risk for medullary thyroid carcinoma (~90%–100%), whereas patients with values from 10 to 100 pg/mL (normal values: <8.5 pg/mL for men, < 5.0 pg/mL for women; immunochemiluminometric assay) have a <25% risk for medullary thyroid carcinoma

    Dispersive analysis of K_{L mu3} and K_{L e3} scalar and vector form factors using KTeV data

    Get PDF
    Using the published KTeV samples of K_L --> pi^{\pm} e^{\mp} nu and K_L --> pi^{\pm} mu^{\mp} nu decays [1], we perform a reanalysis of the scalar and vector form factors based on the dispersive parameterization [2,3]. We obtain phase space integrals I^e_K = 0.15446 \pm 0.00025 and I^{mu}_K = 0.10219 \pm 0.00025. For the scalar form factor parameterization, the only free parameter is the normalized form factor value at the Callan-Treiman point (C); our best fit results in ln C = 0.1915 \pm 0.0122. We also study the sensitivity of C to different parametrizations of the vector form factor. The results for the phase space integrals and C are then used to make tests of the Standard Model. Finally, we compare our results with lattice QCD calculations of F_K/F_pi and f_+(0).Comment: 9 pages, 3 figures, to be published in PR

    Value of thrombus CT Characteristics in Patients with Acute Ischemic Stroke

    Get PDF
    BACKGROUND AND PURPOSE: Thrombus CT characteristics might be useful for patient selection for intra-arterial treatment. Our objective was to study the association of thrombus CT characteristics with outcome and treatment effect in patients with acute ischemic stroke. MATERIALS AND METHODS: We included 199 patients for whom thin-section NCCT and CTA within 30 minutes from each other were available in the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute ischemic stroke in the Netherlands (MR CLEAN) study. We assessed the following thrombus characteristics: location, distance from ICA terminus to thrombus, length, volume, absolute and relative density

    The ocean sampling day consortium

    Get PDF
    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits

    Added value of multiphase CTA imaging for thrombus perviousness assessment

    Get PDF
    Purpose: Thrombus perviousness has been associated with favorable functional outcome in acute ischemic stroke (AIS) patients. Measuring thrombus perviousness on CTA may be suboptimal due to potential delay in contrast agent arrival in occluded arteries at the moment of imaging. Dynamic sequences acquired over time can potentially overcome this issue. We investigate if dynamic CTA has added value in assessing thrombus perviousness. Methods: Prospectively collected image data of AIS patients with proven occlusion of the anterior or posterior circulation with thin-slice multi-phase CTA (MCTA) and non-contrast CT were co-registered (n = 221). Thrombus attenuation increase (TAI; a perviousness measure) was measured for the arterial, venous, and delayed phase of the MCTA and time-invariant CTAs (TiCTA). Associations with favorable clinical outcome (90-day mRS ≤ 2) were assessed using univariate and multivariable regressions and calculating areas under receiver operating curves (AUC). Results: TAI determined from the arterial phase CTA was superior in the association with favorable outcome with OR = 1.21 per 10 HU increase (95%CI 1.04–1.41, AUC 0.62, p = 0.014) compared to any other phase (venous 1.14(95%CI 1.01–1.30, AUC 0.58, p = 0.033), delayed 1.046(95%CI 0.919–1.19, AUC 0.53, p = 0.50)), and TiCTA (1.15(95%CI 1.02–1.30, AUC 0.60, p = 0.022). In the multivariable model, only TAI on arterial phase was

    Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke

    Get PDF
    Introduction: Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and non-expert observers. Methods: For 132 consecutive patients with acute ischemic stroke, three experts and two trained observers determined thrombus density by placing three standardized regions of interest (ROIs) in the thrombus and corresponding contralateral arterial segment. Subsequently, absolute and relative thrombus densities were determined using either one or three ROIs. Intraclass correlation coefficient (ICC) was determined, and Bland–Altman analysis was performed to evaluate interobserver and intermethod agreement. Accuracy of the trained observer was evaluated with a reference expert observer using the same statistical analysis. Results: The highest interobserver agreement was obtained for absolute thrombus measurements using three ROIs (ICCs ranging from 0.54 to 0.91). In general, interobserver agreement was lower for relative measurements, and for using one instead of three ROIs. Interobserver agreement of trained non-experts and experts was similar. Accuracy of the trained observer measurements was comparable to the expert interobserver agreement and was better for absolute measurements and with three ROIs. The agreement between the one ROI and three ROI methods was good. Conclusion: Absolute thrombus density measurement has superior interobserver agreement compared to relative density measurement. Interobserver variation is smaller when multiple ROIs are used. Trained non-expert observers can accurately and reproducibly assess absolute thrombus densities using three ROIs

    X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production

    Get PDF
    Germline mutations in five autosomal genes involved in interleukin (IL)-12–dependent, interferon (IFN)-γ–mediated immunity cause Mendelian susceptibility to mycobacterial diseases (MSMD). The molecular basis of X-linked recessive (XR)–MSMD remains unknown. We report here mutations in the leucine zipper (LZ) domain of the NF-κB essential modulator (NEMO) gene in three unrelated kindreds with XR-MSMD. The mutant proteins were produced in normal amounts in blood and fibroblastic cells. However, the patients' monocytes presented an intrinsic defect in T cell–dependent IL-12 production, resulting in defective IFN-γ secretion by T cells. IL-12 production was also impaired as the result of a specific defect in NEMO- and NF-κB/c-Rel–mediated CD40 signaling after the stimulation of monocytes and dendritic cells by CD40L-expressing T cells and fibroblasts, respectively. However, the CD40-dependent up-regulation of costimulatory molecules of dendritic cells and the proliferation and immunoglobulin class switch of B cells were normal. Moreover, the patients' blood and fibroblastic cells responded to other NF-κB activators, such as tumor necrosis factor-α, IL-1β, and lipopolysaccharide. These two mutations in the NEMO LZ domain provide the first genetic etiology of XR-MSMD. They also demonstrate the importance of the T cell– and CD40L-triggered, CD40-, and NEMO/NF-κB/c-Rel–mediated induction of IL-12 by monocyte-derived cells for protective immunity to mycobacteria in humans

    Inhibition of Bacterial and Fungal Biofilm Formation by 675 Extracts from Microalgae and Cyanobacteria

    Get PDF
    Bacterial biofilms are complex biological systems that are difficult to eradicate at a medical, industrial, or environmental level. Biofilms confer bacteria protection against external factors and antimicrobial treatments. Taking into account that about 80% of human infections are caused by bacterial biofilms, the eradication of these structures is a great priority. Biofilms are resistant to old-generation antibiotics, which has led to the search for new antimicrobials from different sources, including deep oceans/seas. In this study, 675 extracts obtained from 225 cyanobacteria and microalgae species (11 phyla and 6 samples belonging to unknown group) were obtained from different culture collections: The Blue Biotechnology and Ecotoxicology Culture Collection (LEGE-CC), the Coimbra Collection of Algae (ACOI) from Portugal, and the Roscoff Culture Collection (RCC) from France. The largest number of samples was made up of the microalgae phylum Chlorophyta (270) followed by Cyanobacteria (261). To obtain a large range of new bioactive compounds, a method involving three consecutive extractions (hexane, ethyl acetate, and methanol) was used. The antibiofilm activity of extracts was determined against seven different bacterial species and two Candida strains in terms of minimal biofilm inhibitory concentration (MBIC). The highest biofilm inhibition rates (%) were achieved against Candida albicans and Enterobacter cloacae. Charophyta, Chlorophyta, and Cyanobacteria were the most effective against all microorganisms. In particular, extracts of Cercozoa phylum presented the lowest MBIC50 and MBIC90 values for all the strains except C. albicans
    corecore