33 research outputs found

    Germination response of Arabidopsis toconcentration of Nitrates in an Aquaponic Hydroponic system

    Get PDF
    Arabidopsis thaliana (ecotype Columbia) was planted on sponges in 4 tanks with continuous aeration through airstones. Different amounts of fish under the same growing conditions for 5 weeks. An equal food-fish ratio was given to all tanks except the control which was a hydroponic setup with Murashige and Skoog solution, a plant growth medium, at 1/5 strength. The growth solution was changed once per week and fish water was partially changed every two weeks. pH, temperature, ammonia, nitrite, nitrate and plant number were recorded once per week. A slow growth was observed in all tanks and the control treatment died on the 3rd week

    Coconut Shell Charcoal Adsorption to Remove Methyl Orange in Aqueous Solutions

    Get PDF
    Activated charcoal was prepared and characterized from residues of coconut peel (CACC) to remove by adsorption the Methyl Orange (AM) dye in aqueous solution. The charcoal was activated with phosphoric acid. The morphology and structure of the pores of the carbon obtained were analyzed by Scanning Electron Microscopy (SEM) and a surface analyzer. The adsorption data were evaluated by the BET, Langmuir and Freundlich isotherms, finding the Langmuir type I model. The surface area of the activated carbon was 526 m2/g with a pore volume of 0.234 cm3/g and an average pore diameter of 1.78 nm, according to BET, which indicates the presence of micropores. The calculated thermodynamic parameters showed that the adsorption of the AM dye in CACC is a spontaneous process at room temperature and that physisorption and chemisorption are probably involved. The adsorption tests were followed by UV–visible spectrophotometry. The effects of the adsorbate concentration (AM) and the heat treatment (450–500°C) with an air atmosphere were investigated, keeping constant the stirring time and the H3PO4/sample weight ratio. The results obtained indicate that the activated carbon obtained could be used as an alternative low-cost adsorbent in the removal of AM from effluents in aqueous solution

    Identification of Galaxy-Galaxy Strong Lens Candidates in the DECam Local Volume Exploration Survey Using Machine Learning

    Get PDF
    We perform a search for galaxy-galaxy strong lens systems using a convolutional neural network (CNN) applied to imaging data from the first public data release of the DECam Local Volume Exploration Survey, which contains 1/4520 million astronomical sources covering 1/44000 deg2 of the southern sky to a 5σ point-source depth of g = 24.3, r = 23.9, i = 23.3, and z = 22.8 mag. Following the methodology of similar searches using Dark Energy Camera data, we apply color and magnitude cuts to select a catalog of 1/411 million extended astronomical sources. After scoring with our CNN, the highest-scoring 50,000 images were visually inspected and assigned a score on a scale from 0 (not a lens) to 3 (very probable lens). We present a list of 581 strong lens candidates, 562 of which are previously unreported. We categorize our candidates using their human-assigned scores, resulting in 55 Grade A candidates, 149 Grade B candidates, and 377 Grade C candidates. We additionally highlight eight potential quadruply lensed quasars from this sample. Due to the location of our search footprint in the northern Galactic cap (b > 10 deg) and southern celestial hemisphere (decl. < 0 deg), our candidate list has little overlap with other existing ground-based searches. Where our search footprint does overlap with other searches, we find a significant number of high-quality candidates that were previously unidentified, indicating a degree of orthogonality in our methodology. We report properties of our candidates including apparent magnitude and Einstein radius estimated from the image separation

    A DESGW Search for the Electromagnetic Counterpart to the LIGO/Virgo Gravitational-wave Binary Neutron Star Merger Candidate S190510g

    Get PDF
    We present the results from a search for the electromagnetic counterpart of the LIGO/Virgo event S190510g using the Dark Energy Camera (DECam). S190510g is a binary neutron star (BNS) merger candidate of moderate significance detected at a distance of 227 ± 92 Mpc and localized within an area of 31 (1166) square degrees at 50% (90%) confidence. While this event was later classified as likely nonastrophysical in nature within 30 hours of the event, our short latency search and discovery pipeline identified 11 counterpart candidates, all of which appear consistent with supernovae following offline analysis and spectroscopy by other instruments. Later reprocessing of the images enabled the recovery of six more candidates. Additionally, we implement our candidate selection procedure on simulated kilonovae and supernovae under DECam observing conditions (e.g., seeing and exposure time) with the intent of quantifying our search efficiency and making informed decisions on observing strategy for future similar events. This is the first BNS counterpart search to employ a comprehensive simulation-based efficiency study. We find that using the current follow-up strategy, there would need to be 19 events similar to S190510g for us to have a 99% chance of detecting an optical counterpart, assuming a GW170817-like kilonova. We further conclude that optimization of observing plans, which should include preference for deeper images over multiple color information, could result in up to a factor of 1.5 reduction in the total number of follow-ups needed for discovery

    Nearest neighbor: the low-mass milky way satellite Tucana III*

    Get PDF
    We present Magellan/IMACS spectroscopy of the recently discovered Milky Way satellite Tucana III (Tuc III). We identify 26 member stars in Tuc III from which we measure a mean radial velocity of v hel = −102.3 ± 0.4 (stat.) ± 2.0 (sys.) km s-1, a velocity dispersion of 0.1 -0.1+0.7 km s-1, and a mean metallicity of [Fe/H]=-2.42 -0.08+0.07. The upper limit on the velocity dispersion is σ < 1.5 km s-1 at 95.5% confidence, and the corresponding upper limit on the mass within the half-light radius of Tuc III is 9.0 × 104 M ⊙. We cannot rule out mass-to-light ratios as large as 240 M ⊙/L ⊙ for Tuc III, but much lower mass-to-light ratios that would leave the system baryon-dominated are also allowed. We measure an upper limit on the metallicity spread of the stars in Tuc III of 0.19 dex at 95.5% confidence. Tuc III has a smaller metallicity dispersion and likely a smaller velocity dispersion than any known dwarf galaxy, but a larger size and lower surface brightness than any known globular cluster. Its metallicity is also much lower than those of the clusters with similar luminosity. We therefore tentatively suggest that Tuc III is the tidally stripped remnant of a dark matter-dominated dwarf galaxy, but additional precise velocity and metallicity measurements will be necessary for a definitive classification. If Tuc III is indeed a dwarf galaxy, it is one of the closest external galaxies to the Sun. Because of its proximity, the most luminous stars in Tuc III are quite bright, including one star at V = 15.7 that is the brightest known member star of an ultra-faint satellite

    The DECam Local Volume Exploration Survey Data Release 2

    Get PDF
    We present the second public data release (DR2) from the DECam Local Volume Exploration survey (DELVE). DELVE DR2 combines new DECam observations with archival DECam data from the Dark Energy Survey, the DECam Legacy Survey, and other DECam community programs. DELVE DR2 consists of similar to 160,000 exposures that cover >21,000 deg(2) of the high-Galactic-latitude ( divide b divide > 10 degrees) sky in four broadband optical/near-infrared filters (g, r, i, z). DELVE DR2 provides point-source and automatic aperture photometry for similar to 2.5 billion astronomical sources with a median 5 sigma point-source depth of g = 24.3, r = 23.9, i = 23.5, and z = 22.8 mag. A region of similar to 17,000 deg(2) has been imaged in all four filters, providing four-band photometric measurements for similar to 618 million astronomical sources. DELVE DR2 covers more than 4 times the area of the previous DELVE data release and contains roughly 5 times as many astronomical objects. DELVE DR2 is publicly available via the NOIRLab Astro Data Lab science platform

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore