11 research outputs found

    The elemental stoichiometry (C, Si, N, P) of the Hebrides Shelf and its role in carbon export

    Get PDF
    A detailed analysis of the internal stoichiometry of a temperate latitude shelf sea system is presented which reveals strong vertical and horizontal gradients in dissolved nutrient and particulate concentrations and in the elemental stoichiometry of those pools. Such gradients have implications for carbon and nutrient export from coastal waters to the open ocean. The mixed layer inorganic nutrient stoichiometry shifted from balanced N:P in winter, to elevated N:P in spring and to depleted N:P in summer, relative to the Redfield ratio. This pattern suggests increased likelihood of P limitation of fast growing phytoplankton species in spring and of N limitation of slower growing species in summer. However, as only silicate concentrations were below potentially limiting concentrations during summer and autumn the stoichiometric shifts in inorganic nutrient N:P are considered due to phytoplankton nutrient preference patterns rather than nutrient exhaustion. Elevated particulate stoichiometries corroborate non-Redfield optima underlying organic matter synthesis and nutrient uptake. Seasonal variation in the stoichiometry of the inorganic and organic nutrient pools has the potential to influence the efficiency of nutrient export. In summer, when organic nutrient concentrations were at their highest and inorganic nutrient concentrations were at their lowest, the organic nutrient pool was comparatively C poor whilst the inorganic nutrient pool was comparatively C rich. The cross-shelf export of these pools at this time would be associated with different efficiencies regardless of the total magnitude of exchange. In autumn the elemental stoichiometries increased with depth in all pools revealing widespread carbon enrichment of shelf bottom waters with P more intensely recycled than N, N more intensely recycled than C, and Si weakly remineralized relative to C. Offshelf carbon fluxes were most efficient via the inorganic nutrient pool, intermediate for the organic nutrient pool and least efficient for the particulate pool. N loss from the shelf however was most efficient via the dissolved organic nutrient pool. Mass balance calculations suggest that 28% of PO43−, 34% of NO3− and 73% of Si drawdown from the mixed layer fails to reappear in the benthic water column thereby indicating the proportion of the nutrient pools that must be resupplied from the ocean each year to maintain shelf wide productivity. Loss to the neighbouring ocean, the sediments, transference to the dissolved organic nutrient pool and higher trophic levels are considered the most likely fate for these missing nutrients

    Fat Oxidation, Fitness and Skeletal Muscle Expression of Oxidative/Lipid Metabolism Genes in South Asians: Implications for Insulin Resistance?

    Get PDF
    <p><b>Background:</b> South Asians are more insulin resistant than Europeans, which cannot be fully explained by differences in adiposity. We investigated whether differences in oxidative capacity and capacity for fatty acid utilisation in South Asians might contribute, using a range of whole-body and skeletal muscle measures.</p> <p><b>Methodology/Principal Findings:</b> Twenty men of South Asian ethnic origin and 20 age and BMI-matched men of white European descent underwent exercise and metabolic testing and provided a muscle biopsy to determine expression of oxidative and lipid metabolism genes and of insulin signalling proteins. In analyses adjusted for age, BMI, fat mass and physical activity, South Asians, compared to Europeans, exhibited; reduced insulin sensitivity by 26% (p = 0.010); lower VO2max (40.6±6.6 vs 52.4±5.7 ml.kg−1.min−1, p = 0.001); and reduced fat oxidation during submaximal exercise at the same relative (3.77±2.02 vs 6.55±2.60 mg.kg−1.min−1 at 55% VO2max, p = 0.013), and absolute (3.46±2.20 vs 6.00±1.93 mg.kg−1.min−1 at 25 ml O2.kg−1.min−1, p = 0.021), exercise intensities. South Asians exhibited significantly higher skeletal muscle gene expression of CPT1A and FASN and significantly lower skeletal muscle protein expression of PI3K and PKB Ser473 phosphorylation. Fat oxidation during submaximal exercise and VO2max both correlated significantly with insulin sensitivity index and PKB Ser473 phosphorylation, with VO2max or fat oxidation during exercise explaining 10–13% of the variance in insulin sensitivity index, independent of age, body composition and physical activity.</p> <p><b>Conclusions/Significance:</b> These data indicate that reduced oxidative capacity and capacity for fatty acid utilisation at the whole body level are key features of the insulin resistant phenotype observed in South Asians, but that this is not the consequence of reduced skeletal muscle expression of oxidative and lipid metabolism genes.</p&gt

    The GEOTRACES Intermediate Data Product 2014

    Get PDF
    The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-? data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes

    Rapid increase of observed DIC and pCO(2) in the surface waters of the North Sea in the 2001-2011 decade ascribed to climate change superimposed by biological processes

    Get PDF
    The CO2 system in the North Sea over the 2001-2011 decade was investigated using four comprehensive basin-wide datasets covering the late summer periods of 2001, 2005, 2008 and 2011. We find that rises in surface water DIC and pCO(2) exceeded concurrent rises in atmospheric pCO(2), which we attribute primarily to biological activity in late summer. After accounting for this biological signal, the observed ocean acidification occurs at a rate that is consistent with concurrent atmospheric and open ocean CO2 increases over the 2001-2011 decade. Nevertheless, we do find a consistent reduction in CO2 undersaturation in the NNS and an increase in CO2 supersaturation in the SNS. We propose that the synergistic effects of increasing atmospheric pCO(2) and subsequent decrease in seawater buffering capacity, together with rising sea surface temperatures in the future oceans, may reduce the strength of the North Sea as a CO2 sink. Such a reduction would diminish the efficiency of this region as a continental shelf pump with respect to uptake of CO2 by the sea. Ultimately this would constitute a positive feedback mechanism, i.e. enhancing the airborne fraction of anthropogenic CO2 and thus the net rate of increase of atmospheric pCO(2) and subsequent global climate change. (C) 2015 Elsevier B.V. All rights reserved.</p

    The internal consistency of the North Sea carbonate system

    Full text link
    Abstract In 2002 (February) and 2005 (August), the full suite of carbonate system parameters (total alkalinity (AT), dissolved inorganic carbon (DIC), pH, and partial pressure of \{CO2\} (pCO2) were measured on two re-occupations of the entire North Sea basin, with three parameters (AT, DIC, pCO2) measured on four additional re-occupations, covering all four seasons, allowing an assessment of the internal consistency of the carbonate system. For most of the year, there is a similar level of internal consistency, with \{AT\} being calculated to within ± 6 ÎŒmol kg− 1 using \{DIC\} and pH, \{DIC\} to ± 6 ÎŒmol kg− 1 using \{AT\} and pH, pH to ± 0.008 using \{AT\} and pCO2, and pCO2 to ± 8 ÎŒatm using \{DIC\} and pH, with the dissociation constants of Millero et al. (2006). In spring, however, we observe a significant decline in the ability to accurately calculate the carbonate system. Lower consistency is observed with an increasing fraction of Baltic Sea water, caused by the high contribution of organic alkalinity in this water mass, not accounted for in the carbonate system calculations. Attempts to improve the internal consistency by accounting for the unconventional salinity–borate relationships in freshwater and the Baltic Sea, and through application of the new North Atlantic salinity–boron relationship (Lee et al., 2010), resulted in no significant difference in the internal consistency

    Rapid increase of observed \DIC\ and pCO2 in the surface waters of the North Sea in the 2001-2011 decade ascribed to climate change superimposed by biological processes

    Get PDF
    Cycles of metals and carbon in the oceans - A tribute to the work stimulated by Hein de BaarInternational audienceAbstract The \CO2\ system in the North Sea over the 2001-2011 decade was investigated using four comprehensive basin-wide datasets covering the late summer periods of 2001, 2005, 2008 and 2011. We find that rises in surface water \DIC\ and pCO2 exceeded concurrent rises in atmospheric pCO2, which we attribute primarily to biological activity in late summer. After accounting for this biological signal, the observed ocean acidification occurs at a rate that is consistent with concurrent atmospheric and open ocean \CO2\ increases over the 2001-2011 decade. Nevertheless, we do find a consistent reduction in \CO2\ undersaturation in the \NNS\ and an increase in \CO2\ supersaturation in the SNS. We propose that the synergistic effects of increasing atmospheric pCO2 and subsequent decrease in seawater buffering capacity, together with rising sea surface temperatures in the future oceans, may reduce the strength of the North Sea as a \CO2\ sink. Such a reduction would diminish the efficiency of this region as a continental shelf pump with respect to uptake of \CO2\ by the sea. Ultimately this would constitute a positive feedback mechanism, i.e. enhancing the airborne fraction of anthropogenic \CO2\ and thus the net rate of increase of atmospheric pCO2 and subsequent global climate change

    The annual and seasonal variability of the carbonate system in the Bay of Brest (Northwest Atlantic Shelf, 2008–2014)

    No full text
    From 2008 to 2014, the MAREL-Iroise buoy, located in the Bay of Brest, collected high-frequency measurements of partial pressure of CO2 (pCO2) and ancillary hydrographic parameters, in conjunction with a comprehensive sampling regime of two additional carbonate system variables total alkalinity (AT), and dissolved inorganic carbon (DIC). Biological processes drive variations in AT and DIC throughout the year, except in winter, when primary production is negligible and large freshwater inputs occur. Annually, the Bay of Brest generally behaves as a source of CO2 to the atmosphere (0.14 ± 0.20 mol C m− 2 yr− 1), showing inter-annual variability significantly linked to annual net community production (NCP). The presence of a large community of benthic filter feeders leads to high levels of particulate organic matter (POM) and opal deposition during the spring diatom bloom. Over the following few months, benthic POM remineralisation reduces the spring CO2 deficit relative to the atmosphere, and remineralisation of biogenic silica supplies further late spring primary production. The result is an inverse spring NCP – air-sea CO2 flux relationship, whereby greater NCP in early spring results in lower fluxes of CO2 into the Bay in late spring. This recycling mechanism, or silicic acid pump, also links the spring and summer NCP values, which are both determined by the peak wintertime nutrient concentrations. The carbonate system is further affected by the benthic community in winter, when CaCO3 dissolution is evident from notable deviations in the ΔAT:ΔDIC ratio. This study highlights the necessity of individual study of coastal, temperate ecosystems and contributes to a better understanding of what determines coastal areas as sinks or sources of CO2 to the atmosphere

    Starlikeness of Libera transformation (II) (Applications of Complex Function Theory to Differential Equations)

    Get PDF
    The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. GonzĂĄlez
    corecore