

	_
Title	Starlikeness of Libera transformation (II) (Applications of Complex Function Theory to Differential Equations)
Author(s)	Nunokawa, Mamoru; Ota, Yoshiaki
Citation	数理解析研究所講究録 (1998), 1062: 62-68
Issue Date	1998-09
URL	http://hdl.handle.net/2433/62406
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Starlikeness of Libera transformation II

Mamoru Nunokawa and Yoshiaki Ota

(布川 護,大田悦彰

群馬大学教育学部)

1. Introduction.

Let A denote the class of function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

that are analytic in $E = \{z : |z| < 1\}$.

A function $f(z) \in A$ is called to be starlike if and only if

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > 0$$
 in E.

Similarly, $f(z) \in A$ is called to be convex if and only if

$$1 + \operatorname{Re} \frac{zf''(z)}{f'(z)} > 0 \qquad in \quad E.$$

The following interesting results are due to Libera [2].

Theorem A. If f(z) is starlike in E, then so does the function F(z), defined by

$$F(z) = \frac{2}{z} \int_0^z f(t)dt.$$

Theorem B. If f(z) is convex in E, then so does the function F(z), defined by

$$F(z) = \frac{2}{z} \int_0^z f(t) dt.$$

On the other hand, S.Singh and R.Singh [5, Theorem 1] and [4, Theorem 1] proved the following Theorem C and D and Nunokawa [3] proved Theorem E.

Theorem C. If $f(z) \in A$ and Ref'(z) > 0 in E, then the function

$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt,$$

is starlike in E for all c, $-1 < c \le 0$.

Theorem D. If $f(z) \in A$ and |zf''(z)/f'(z)| < 3/2 in E, then the function

$$F(z) = \frac{2}{z} \int_0^z f(t) dt.$$

is convex.

Theorem E. Let $f(z) \in A$ and suppose that

$$\operatorname{Re} f'(z) > rac{1}{12} (\log rac{4}{e}) (an^2 lpha^* rac{\pi}{2} - 3)$$
 in E

where

$$-0.01759 < \frac{1}{12} (\log \frac{4}{e}) (\tan^2 \alpha^* \frac{\pi}{2} - 3) < -0.01751.$$

Then F(z) is starlike in E, where

$$F(z) = \frac{2}{z} \int_0^z f(t) dt.$$

2. Prliminary.

Lemma. Let $f(z) \in A$ and $f(z) \neq 0$ in 0 < |z| < 1 and suppose that

$$|\arg f'(z)| < \frac{\pi}{2}\alpha$$
 in E

where

$$lpha=eta+rac{2}{\pi} an^{-1}rac{eta}{2}\quad and \quad eta>0.$$

Then we have

$$|\arg g'(z)| < \frac{\pi}{2} \alpha$$
 in E

and

$$|\arg \frac{g(z)}{z}| < \frac{\pi}{2}\gamma$$
 in E ,

where

$$0 < \gamma, \quad \beta = \gamma + \frac{2}{\pi} \tan^{-1} \gamma$$

and

$$g(z) = \frac{2}{z} \int_0^z f(t) dt.$$

Proof. From the hypothesis, it follows that

$$f(z) = g(z) + zg'(z),$$

$$f'(z) = 2g'(z) + zg''(z)$$

and so

$$\arg f'(z) = \arg g'(z) + \arg(2 + \frac{zg''(z)}{g'(z)}).$$

Now, if there exists a point $z_0 \in E$ such that

$$|\arg g'(z)| < rac{\pi}{2}eta \quad for \quad |z| < |z_0|$$

and

$$|\arg g(z_0)| = \frac{\pi}{2} \beta$$

Then, from [3, Lemma], we have

$$\frac{z_0 g''(z_0)}{g'(z_0)} = i\beta k$$

where

$$k \geq \frac{1}{2}(a + \frac{1}{a})$$
 when $\arg g'(z_0) = \frac{\pi}{2}\beta$

and

$$k \leq -\frac{1}{2}(a+\frac{1}{a}) \quad when \quad \arg g'(z_0) = -\frac{\pi}{2} eta$$

where

$$p(z_0)^{\frac{1}{\beta}} = \pm ia, \quad a > 0.$$

If arg $g'(z_0) = \pi \beta/2$, then we have

$$egin{align} rg f'(z_0) &= rg g'(z_0) + rg (2 + rac{z g''(z_0)}{g'(z_0)}) \ &= rac{\pi}{2} eta + rg (2 + i eta k) \ &\geq rac{\pi}{2} (eta + rac{2}{\pi} an^{-1} rac{eta}{2}). \end{aligned}$$

This contradicts the hypothesis. On the other hand, if arg $g'(z_0) = -\pi \beta/2$, then we have

$$\arg f'(z_0) = -\frac{\pi}{2}\beta + \arg(2 + i\beta k)$$

$$\leq -\frac{\pi}{2} - \tan^{-1}\frac{\beta}{2}$$

$$= -\frac{\pi}{2}(\beta + \frac{2}{\pi}\tan^{-1}\frac{\beta}{2}).$$

This also contradicts the hypothesis. Therefore we must have

$$|\arg g(z)| < rac{\pi}{2}eta \quad in \quad E.$$

Putting

$$p(z) = \frac{g(z)}{z}, \quad p(0) = 1,$$

then we have

$$g'(z) = p(z) + zp'(z)$$

and

$$\arg g'(z) = \arg p(z) + \arg(1 + \frac{zp'(z)}{p(z)}).$$

If there exists a point $z_0 \in E$ such that

$$|\arg p(z)| < \frac{\pi}{2}\gamma$$
 for $|z| < |z_0|$

and

$$|\arg p(z_0)| = \frac{\pi}{2}\gamma,$$

then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = i \gamma k$$

where

$$k \geq \frac{1}{2}(a + \frac{1}{a}) \quad when \quad \arg p(z_0) = \frac{\pi}{2}\gamma$$

and

$$k \leq -\frac{1}{2}(a+\frac{1}{a})$$
 when $\arg p(z_0) = -\frac{\pi}{2}\gamma$

where

$$p(z_0)^{\frac{1}{\gamma}}=\pm ia, \quad a>0.$$

Then, applying the same method as the above, we have

$$|\arg g'(z_0)| < \frac{\pi}{2}(\gamma + \frac{2}{\pi}\tan^{-1}\gamma).$$

This contradicts the hypothesis. Therefore we must have

$$|\arg\frac{g(z)}{z}|<\frac{\pi}{2}\gamma \quad \text{ in } \quad E.$$

3. Main result.

Theorem. Let $f(z) \in A$, $f(z) \neq 0$ in 0 < |z| < 1,

$$|\arg f'(z)| < \frac{\pi}{2}(\frac{5}{3} - \gamma_0) \quad in \quad E$$

where γ_0 is the smallest positive root of the equation

$$\frac{5}{6} = 2\gamma + \frac{2}{\pi} \tan^{-1} \gamma + \frac{2}{\pi} \tan^{-1} \frac{1}{2} (\gamma + \frac{2}{\pi} \tan^{-1} \gamma)$$

and $0.266 < \gamma_0 < 0.267$.

Let us put

(2)
$$g(z) = \frac{2}{z} \int_0^z f(t)dt.$$

Then g(z) is starlike in E.

Proof. From (1) and Lemma, we easily have

$$|\arg rac{g(z)}{z}| < rac{\pi}{2} \gamma_0 \quad in \quad E.$$

From(2), we have

$$2f(z) = g(z) + zg'(z)$$

and

$$2f'(z) = 2g'(z) + zg''(z)$$

Let us put

$$\frac{zg'(z)}{g(z)} = \frac{1 + w(z)}{1 - w(z)}, \quad w(0) = 0$$

then w(z) is analytic in E and $w(z) \neq 1$ in E.

Then it follows that

$$2f'(z) = 2g'(z) + zg''(z)$$

$$= \frac{zg'(z)}{g(z)} [(\frac{1+w(z)}{1-w(z)})^2 + \frac{2zw'(z)}{(1-w(z))^2} + \frac{1+w(z)}{1-w(z)}].$$

If there exists a point $z_0 \in E$ such that

$$\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1,$$

then from Jack's lemma [1, Lemma], we have

$$\frac{z_0w'(z_0)}{w(z_0)}=k\geq 1$$

Putting $w(z_0) = e^{i\theta}$, $0 \le \theta < 2\pi$, we have

$$2f'(z_0) = 2g'(z_0) + z_0g''(z_0)$$

$$= \frac{g(z_0)}{z_0} \left[\left(\frac{1 + e^{i\theta}}{1 - e^{i\theta}} \right)^2 + \frac{2ke^{i\theta}}{(1 - e^{i\theta})^2} + \frac{1 + e^{i\theta}}{1 - e^{i\theta}} \right]$$

$$= \frac{g(z_0)}{z_0} \left[-\frac{\sin^2 \theta}{(1 - \cos \theta)^2} - \frac{k}{1 - \cos \theta} + \frac{i\sin \theta}{1 - \cos \theta} \right].$$

Then we have

$$\arg f'(z_{0}) \geq \arg\left(-\frac{\sin^{2}\theta + k(1 - \cos\theta)}{(1 - \cos\theta)^{2}} - \frac{i\sin(1 - \cos\theta)}{(1 - \cos\theta)^{2}}\right) - |\arg\left(\frac{g(z_{0})}{z_{0}}\right)|$$

$$\geq \arg\left(-\frac{\sin^{2}\theta + 1 - \cos\theta}{(1 - \cos\theta)^{2}} - \frac{i\sin\theta(1 - \cos\theta)}{(1 - \cos\theta)^{2}}\right) - \frac{\pi}{2}\gamma_{0}$$

$$= \pi - \tan^{-1}\frac{|\sin\theta|(1 - \cos\theta)}{\sin^{2}\theta + 1 - \cos\theta} - \frac{\pi}{2}\gamma_{0}$$

$$= \pi - \tan^{-1}\frac{|\sin\theta|}{2 + \cos\theta} - \frac{\pi}{2}\gamma_{0}$$

$$\geq \pi - \tan^{-1}\frac{1}{\sqrt{3}} - \frac{\pi}{2}\gamma_{0}$$

$$= \frac{5}{6}\pi - \frac{\pi}{2}\gamma_{0}$$

$$= \frac{\pi}{2}(\frac{5}{3} - \gamma_{0}).$$

This contradicts (1). Therefore we must have

$$|w(z)| < 1$$
 in E

This show that

$$Re rac{zg'(z)}{g(z)} > 0$$
 in E .

or g(z) is starlike in E.

References

- [1] I. S. Jack, Functions starlike and convx of order α . J. London Math. Soc., 3, 469-474(1971).
- [2] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16, 755-758(1965).
- [3] M. Nunokawa, On Starlikeness of Libera Transformation, Complex Variables, 17, 79-83(1991).
- [4] R. Singh and S. Singh, Starlikeness and convexity of certain integrals, Ann Univ. Mariac Curie-Sklodowska Sect. A 35, 45-47(1981).
- [5] R. Singh and S. Singh, Starlikeness of close-to-convex functions. Indian J. Pure Appl. Math., 13, 190-194(1982).

Mamoru Nunokawa Yoshiaki Ota

Department of Mathematics University of Gunma Aramaki, Maebashi, Gunma 371, Japan