46 research outputs found

    High prevalence of obesity, central obesity and abnormal glucose tolerance in the middle-aged Finnish population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a worldwide increase in the prevalence of obesity and disturbances in glucose metabolism. The aim of this study was to assess the current prevalence of obesity, central obesity and abnormal glucose tolerance in Finnish population, and to investigate the associations between body mass index (BMI), waist circumference and abnormal glucose tolerance.</p> <p>Methods</p> <p>A cross-sectional population-based survey was conducted in Finland during October 2004 and January 2005. A total of 4500 randomly selected individuals aged 45–74 years were invited to a health examination that included an oral glucose tolerance test. The participation rate was 62% in men and 67% in women.</p> <p>Results</p> <p>The prevalence of obesity was 23.5% (95% Confidence Interval (CI) 21.1–25.9) in men, and 28.0% (95% CI 25.5–30.5) in women. The overall prevalence of abnormal glucose tolerance (including type 2 diabetes, impaired glucose tolerance, or impaired fasting glucose) was 42.0% (95% CI 39.2–44.8) in men and 33.4% (95% CI 30.9–36.0) in women. The prevalence of previously unknown, screen-detected type 2 diabetes was 9.3% (95% CI 7.7–11.0) in men and 7.3% (95% CI 5.9–8.7) in women. Central obesity was associated with abnormal glucose tolerance within each of the three BMI categories normal (< 25 kg/m<sup>2</sup>), overweight (25–29 kg/m<sup>2</sup>), and obese (≥ 30 kg/m<sup>2</sup>).</p> <p>Conclusion</p> <p>In a population-based random sample of Finnish population, prevalences of obesity, central obesity and abnormal glucose tolerance were found to be high. A remarkably high number of previously undetected cases of type 2 diabetes was detected. Waist circumference is a predictor of abnormal glucose tolerance in all categories of obesity.</p

    Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.

    Get PDF
    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes

    Get PDF
    To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip involving 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two demonstrating sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of further common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signalling and cell cycle regulation, in diabetes pathogenesis

    Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    Get PDF
    Peer reviewe
    corecore