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Fasting glucose (FG), 2-h glucose after an oral glucose chal-
lenge (2hGlu), and glycated hemoglobin (HbA1c) are glycemic 
traits that are used to diagnose diabetes1. In addition, HbA1c 

is the most commonly used biomarker to monitor glucose control 
in patients with diabetes. Fasting insulin (FI) reflects a combination 
of insulin secretion and insulin resistance, both of which are com-
ponents of type 2 diabetes (T2D); it also reflects insulin clearance2. 
Collectively, all four glycemic traits are useful to better understand 
T2D pathophysiology3–5 and cardiometabolic outcomes6.

To date, genome-wide association studies (GWAS) and analyses 
of Metabochip and exome arrays have identified more than 120 loci 
associated with glycemic traits in individuals without diabetes7–15. 
However, despite considerable differences in the prevalence of T2D 
risk factors across ancestries16–18, most GWAS of glycemic traits have 
insufficient representation of individuals of non-European ancestry. 
Additionally, they have limited resolution for fine-mapping of causal 
variants and for the identification of effector transcripts. Here we 
present large-scale trans-ancestry meta-analyses of GWAS for four 
glycemic traits in individuals without diabetes. We aimed to identify 
additional glycemic-trait-associated loci; investigate the portability 
of loci and genetic scores across ancestries; leverage differences in 
effect allele frequency (EAF), effect size and linkage disequilibrium 
(LD) across diverse populations to conduct fine-mapping and aid 
the identification of causal variants and/or effector transcripts; and 
compare the genetic architecture of glycemic traits to further iden-
tify the cell types and target tissues that are influenced the most by 
the traits that inform T2D pathophysiology.

Results
Study design and definitions. To identify loci associated with glyce-
mic traits (FG, 2hGlu, FI and HbA1c), we aggregated GWAS in up to 
281,416 individuals without diabetes, approximately 30% of whom 
were of non-European ancestry (13% East Asian, 7% Hispanic, 6% 
African American, 3% South Asian and 2% sub-Saharan African 
(Ugandan data were only available for HbA1c)). Each cohort 
imputed data to the 1000 Genomes Project reference panel19 
(phase 1 v.3, March 2012 or later; Methods, Supplementary Table 1, 
Extended Data Fig. 1, Supplementary Note). Up to around 49.3 mil-
lion variants were directly genotyped or imputed, with between 
38.6 million (2hGlu) and 43.5 million variants (HbA1c) available 

for analysis after exclusions based on minor allele count (MAC) < 3 
and imputation quality (imputation r2 or INFO score < 0.40) in each 
cohort. FG, 2hGlu and FI analyses were adjusted for body-mass 
index (BMI)15 but for simplicity they are abbreviated as FG, 2hGlu 
and FI (Methods).

We first performed trait-specific fixed-effect meta-analyses 
within each ancestry using METAL20 (Methods). We defined 
‘single-ancestry lead’ variants as the strongest trait-associated vari-
ants (P < 5 × 10−8) within a 1 Mb region in an ancestry (Table 1). 
Within each ancestry and each autosome, we used approximate con-
ditional analyses in genome-wide complex trait analysis (GCTA)21,22 
to identify ‘single-ancestry index variants’ (P < 5 × 10−8) that 
exert conditionally distinct effects on the trait (Table 1, Methods, 
Supplementary Note). This approach identified 124 FG, 15 2hGlu, 
48 FI and 139 HbA1c variants that were significant in at least one 
ancestry (Supplementary Table 2).

Next, we conducted trait-specific trans-ancestry meta-analyses 
using MANTRA (Methods, Supplementary Table 1, Supplementary 
Note) to identify genome-wide significant ‘trans-ancestry lead 
variants’, defined as the most-significant trait-associated variant 
across all ancestries (log10[Bayes factor (BF)] > 6, equivalent to 
P < 5 × 10−8)23 (Table 1, Methods). Here, we present trans-ancestry 
results as our primary results (Supplementary Table 2).

Causal variants are expected to affect related glycemic traits 
and may be shared across ancestries. Therefore, we combined all 
single-ancestry lead variants, single-ancestry index variants and/or 
trans-ancestry lead variants (for any trait) mapping within 500 kb 
of each other into a single ‘trans-ancestry locus’ bounded by 500 kb 
flanking sequences (Table 1, Extended Data Fig. 2). As defined in 
Table 1, a trans-ancestry locus may contain multiple causal variants 
that affect one or more glycemic traits, exerting their effect in one 
or more ancestry.

Glycemic trait locus discovery. Trans-ancestry meta-analyses 
identified 235 trans-ancestry loci, of which 59 contained lead 
variants for more than one trait. In addition, we identified seven 
‘single-ancestry loci’ that did not contain any trans-ancestry lead 
variants (Table 1, Supplementary Table 2). Of the 242 combined 
loci, 99 (including 6 of the 7 single-ancestry loci) had not previously 
been associated with any of the four glycemic traits or with T2D at 

The trans-ancestral genomic architecture of 
glycemic traits
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic 
studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association 
studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 
2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry 
and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10−8), 80% of which had no significant evidence of 
between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would 
have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced 
the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set 
analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results 
increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
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the time of analysis (Fig. 1, Supplementary Table 3, Supplementary 
Note). However, based on recent East Asian and trans-ancestry T2D 
GWAS meta-analyses23–27, the lead variants at 27 of the 99 novel 
glycemic trait loci have strong evidence of association with T2D 
(P < 10−4; 13 loci with P < 5 × 10−8), suggesting that they are also 
important in T2D pathophysiology (Supplementary Tables 2 and 4).

Of the six single-ancestry novel loci, three were unique to indi-
viduals of non-European ancestry (Supplementary Table 3). An 
association with individuals of African American ancestry for FI 
(lead variant rs12056334) near LOC100128993 (an uncharacterized 
RNA gene; Supplementary Note), an association with individuals of 
African American ancestry for FG (lead variant rs61909476) near 
ETS1 and an association with individuals of Hispanic descent for 
FG (lead variant rs12315677) within PIK3C2G (Supplementary 
Table 3) were found. Despite broadly similar EAFs across ancestries, 
rs61909476 was significantly associated with FG only in individu-
als of African American descent (EAF ≈ 7%, β = 0.0812 mmol l−1, 
s.e. = 0.01 mmol l−1, P = 3.9 × 10−8 compared with EAF = 10–17%, 
β = 0–0.002 mmol l−1, s.e. = 0.003–0.017 mmol l−1, P = 0.44–0.95 in 
all other ancestries; Supplementary Table 2, Supplementary Note). 
The nearest protein-coding gene, ETS1, encodes a transcription 
factor that is expressed in mouse pancreatic β-cells, and its over-
expression decreases glucose-stimulated insulin secretion in mouse 
islets28. Located within the PIK3C2G gene, rs12315677 has an 84% 
EAF in individuals of Hispanic descent (70–94% in other ances-
tries) and is significantly associated with FG in this ancestry alone 
(β = 0.0387 mmol l−1, s.e. = 0.0075 mmol l−1, P = 4.0 × 10−8 com-
pared with β = −0.0128–0.010 mmol l−1, s.e. = 0.003–0.018 mmol l−1, 
P = 0.14–0.76 in all other ancestries; Supplementary Note). In mice, 
deletion of Pik3c2g leads to a phenotype characterized by reduced 
glycogen storage in the liver, hyperlipidemia, adiposity and insulin 
resistance with increasing age or after a high-fat diet29. Instances of 
similar EAFs but differing effect sizes between populations could 
be due to genotype-by-environment or other epistatic effects. 
Alternatively, lower imputation accuracy in smaller sample sizes 
could deflate effect sizes, although the imputation quality for these 
variants was good (average r2 = 0.81). Finally, the variants detected 

here may be in LD with ancestry-specific causal variants that were 
not investigated here that differ in frequency across ancestries. 
However, we could not find evidence of rarer alleles in the cog-
nate populations from the 1000 Genomes Project (Supplementary  
Table 5). The final three single-ancestry loci were identified in indi-
viduals of European ancestry (Supplementary Note).

Next, by rescaling the standard errors of allelic effect sizes to 
artificially boost the sample size of the European meta-analysis to 
match that of trans-ancestry meta-analysis, we determined that 21 
of the novel trans-ancestry loci would not have been discovered 
with an equivalent sample size that consisted exclusively of individ-
uals of European ancestry (Supplementary Note). Their discovery 
was due to the higher EAF and/or larger effect size in populations 
of non-European ancestry. In particular, two loci (near LINC00885 
and MIR4278) contain single-ancestry lead variants associated with 
East Asian and African American ancestry, respectively, suggest-
ing that these specific ancestries may be driving the trans-ancestry 
discovery (Supplementary Tables 2,3). Combined with the three 
single-ancestry non-European loci described above, our results 
show that 24% (24 out of 99) of the novel loci were discovered 
due to the contribution of participants of non-European ances-
try, strengthening the argument for expanding genetic studies in  
diverse populations.

Allelic architecture of glycemic traits. Single-ancestry and 
trans-ancestry results combined increased the number of estab-
lished loci for FG to 102 (182 signals, 53 novel loci), FI to 66 (95 
signals, 49 novel loci), 2hGlu to 21 (28 signals, 11 novel loci) and 
HbA1c to 127 (218 signals, 62 novel loci) (Supplementary Table 2), 
with considerable overlap across traits (Extended Data Fig. 3). We 
also detected (P < 0.05 or log10[BF] > 0) most (around 90%) of the 
previously established glycemic signals, 70–88% of which attained 
genome-wide significance (Supplementary Note, Supplementary 
Table 6). Given that analyses for FG, FI and 2hGlu were performed 
adjusted for BMI, we confirmed that collider bias did not influence 
more than 98% of discovered signals30 (Supplementary Note). As 
expected, given the greater power due to increased sample sizes, 

Table 1 | Glossary of terms

Term Definition

effect allele The effect allele was the allele defined by MeTAL based on trans-ancestry FG results and aligned such that the same allele 
was kept as the effect allele across all ancestries and traits, irrespective of its allele frequency or effect size for that particular 
ancestry and trait. In this way, the effect allele is not necessarily the trait-increasing allele.

Single-ancestry  
lead variant

The variant with the smallest P value among all variants with P < 5 × 10−8 within a 1 Mb region, based on the analysis of a single 
trait in a single ancestry.

Single-ancestry  
index variants

Variants identified by GCTA of each autosome as exerting conditionally distinct effects on a given trait in a given ancestry 
(P < 5 × 10−8). As defined, these include the single-ancestry lead variants.

Trans-ancestry  
lead variant

The variant identified by trans-ancestry meta-analysis of a given trait that has the strongest association for that trait 
(log10[BF] > 6, which is broadly equivalent to P < 5 × 10−8) within a 1 Mb region.

Single-ancestry locus The 1 Mb region centered on a single-ancestry lead variant that does not contain a lead variant identified in the trans-ancestry 
meta-analysis (that is, does not contain a trans-ancestry lead variant).

Signal Conditionally independent association between a trait and a set of variants in LD with each other and that is noted by the 
corresponding index variant.

Trans-ancestry locus A genomic interval that contains trans-ancestry trait-specific lead variants, with or without additional single-ancestry index 
variants, for one or more traits. This region is defined by starting at the telomere of each chromosome and selecting the first 
single-ancestry index variant or trans-ancestry lead variant for any trait. If other trans-ancestry lead variants or single-ancestry 
index variants mapped within 500 kb of the first signal, they were merged into the same locus. This process was repeated until 
there were no more signals within 500 kb of the previous variant. A 500 kb interval was added to the beginning of the first signal, 
and the end of the last signal to establish the final boundary of the trans-ancestry locus (extended Data Fig. 2). As defined, a 
trans-ancestry locus may not have a single lead trans-ancestry variant, but may instead contain multiple trans-ancestry lead 
variants, one for each trait.

This study combined analyses of trait associations across multiple correlated glycemic traits and across multiple ancestries, which has presented challenges in our ability to apply commonly used terms 
with clarity. For this reason, we define terms often used in the field with variable meaning and provide definitions for new terms used in this study.
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Fig. 1 | summary of all 242 loci identified in this study. The 235 trans-ancestry loci are shown in orange (novel) or black (established) along with seven 
single-ancestry loci (blue) represented by the nearest gene. each locus is mapped to the corresponding chromosome (outer segment). each set of rows 
shows the results from the trans-ancestry analysis (orange) and each of the ancestries: european (purple), African American (tan), east Asian (gray), South 
Asian (green), Hispanic (yellow), ugandan (pink). Loci with a corresponding signal associated with T2D are represented by red circles in the middle of the 
plot. TMEM110 is also known as STIMATE; FAM101A is also known as RFLNA; PDX1-AS1 is also known as PLUT; LRRC16A is also known as CARMIL1; FAM65B 
is also known as RIPOR2; C15orf26 is also known as CFAP161; FAM58A is also known as CCNQ; IKBKAP is also known as ELP1; AQPEP is also known as LVRN; 
WARS is also known as WARS1; ITFG3 is also known as FAM234A; BRE is also known as BABAM2; NA is also known as XK.
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new association signals tended to have smaller effect sizes and/or 
EAFs in individuals of European ancestry compared with estab-
lished signals (Extended Data Fig. 4).

Characterization of lead variants across ancestries. To better 
understand the transferability of trans-ancestry lead variants across 
ancestries, we investigated the pairwise EAF correlation and the 
pairwise summarized heterogeneity of effect sizes between ances-
tries31 (Methods, Supplementary Note). Consistent with popula-
tion history and evolution, these results demonstrated considerable 
EAF correlation (ρ2 > 0.70) between populations of European and 
Hispanic, European and South Asian, and Hispanic and South Asian 
ancestry, which was consistent across all four traits, and between 
individuals of African American and Ugandan descent for HbA1c 
(Extended Data Fig. 5). Despite high EAF correlations, some pair-
wise comparisons exhibited strong evidence for effect size hetero-
geneity between ancestries that was less consistent between traits 
(Extended Data Fig. 5). However, sensitivity analyses demonstrated 
that, across all comparisons, the evidence for heterogeneity is driven 
by a small number of variants, with between 81.5% (for HbA1c) and 
85.7% (for FG) of trans-ancestry lead variants showing no evidence 
for trans-ancestry heterogeneity (P > 0.05) (Supplementary Note).

Trait variance explained by associated loci. The trait variance 
explained by genome-wide significant loci was assessed using only 
the single-ancestry variants or a combination of single-ancestry 
and trans-ancestry variants (Supplementary Table 7) with β values 
extracted from the relevant single-ancestry meta-analysis results 
(Methods). The variance explained was assessed by linear regression 
in a subset of the contributing cohorts (Methods, Supplementary 
Tables 8–11). In general, the approach that explained the most vari-
ance was one in which trans-ancestry lead variants that had P < 0.1 
in the relevant single-ancestry meta-analysis were combined with 
single-ancestry variants that were not in LD with the trans-ancestry 
variants (LD r2 < 0.1) (Fig. 2, list C in Supplementary Tables 8–11). 
With this approach, the mean variance in the trait distribution 
explained was between 0.7% (2hGlu in European ancestry) and 
6% (HbA1c in African American ancestry). The European-based 
estimates explained more variance relative to previous estimates of 
2.8% for FG and 1.7% for HbA1c32 (Supplementary Note).

Transferability of European-ancestry-derived polygenic scores. 
To investigate the transferability of polygenic scores across ances-
tries we used the PRS-CSauto software33 to first build polygenic 
scores (PGSs) for each glycemic trait based on the data from indi-
viduals of European ancestry. However, the training set for 2hGlu 
was too small; therefore, this trait was excluded. To build the PGSs, 
for each trait we first removed five of the largest European cohorts 
from the European ancestry meta-analysis. These five cohorts were 
meta-analyzed and used as our European ancestry test dataset, for 
each trait. The remaining European ancestry cohorts were also 
meta-analyzed and used as the training dataset, from which we 
derived a PGS for each trait (Methods). We used PRS-CSauto to 
revise the effect size estimates for the variants in the score (obtained 
from the training European datasets) based on the LD of the test 
population. PRS-CSauto does not have LD reference panels for 
South Asian or Hispanic ancestry and as such we were unable to test 
the transferability of the PGS to those populations. The ‘gtx’ pack-
age34 (Methods) was used to obtain the R2 for each test population 
(Fig. 3, Supplementary Table 12). Consistent with other complex 
traits35, the European-ancestry-derived PGS had greater predictive 
power for test data of individuals of European ancestry than for data 
from other ancestry groups.

Fine-mapping. We fine-mapped, 231 trans-ancestry and 
six single-ancestry autosomal loci (Supplementary Table 2, 

Supplementary Note). Using FINEMAP with ancestry-specific 
LD and an average LD matrix across ancestries, we conducted 
fine-mapping both within (161 loci with single-ancestry lead vari-
ants) and across ancestries (231 loci) for each trait (Methods). 
Because 59 of the 231 trans-ancestry loci were associated with more 
than one trait, we conducted trans-ancestry fine-mapping for a total 
of 305 locus–trait associations. Of these 305 locus–trait combina-
tions, FINEMAP estimated the presence of a single causal variant at 
186 loci (61%), whereas multiple distinct causal variants were impli-
cated at 126 loci (39%), for a total of 464 causal variants (Fig. 4a).

Credible sets for causal variants. At each locus, we next constructed 
credible sets (CSs) for each causal variant that account for at least 
99% of the posterior probability of association (PPA). We identi-
fied 21 locus–trait associations (at 19 loci) for which the 99% CS 
included a single variant and we highlight four examples (Fig. 4b, 
Methods, Supplementary Note, Supplementary Table 13).

At MTNR1B and SIX3 we identified, respectively, rs10830963 
(PPA > 0.999, for both HbA1c and FG) and rs12712928 
(PPA = 0.997, for FG) as the likely causal variants. Previous stud-
ies confirm for both loci that these variants affect transcriptional 
activity36–38 (Supplementary Note). At a locus near PFKM associated 
with HbA1c, trans-ancestry fine-mapping identified rs12819124 
(PPA > 0.999) as the likely causal variant. This variant has previously 
been associated with mean corpuscular hemoglobin39, suggesting 
an effect on HbA1c through red blood cells (RBCs; Supplementary 
Note). At HBB, we identified rs334 (PPA > 0.999; Glu7Val) as the 
likely causal variant associated with HbA1c. rs334 is a causal vari-
ant of sickle-cell anemia40, was previously associated with urinary 
albumin-to-creatinine ratio in individuals of Caribbean Hispanic 
ancestry41, severe malaria in a study with a population of Tanzanian 
ancestry42, hematocrit and mean corpuscular volume in populations 
of Hispanic/Latino descent43 and RBC distribution in individuals of 
Ugandan ancestry44; all of these results point to a variant effect on 
HbA1c through non-glycemic pathways.

The remaining locus–trait associations with a single variant in 
the 99% CS (Supplementary Table 13) point to variants that could 
be prioritized for functional follow-up to elucidate the effect on gly-
cemic trait physiology.

At an additional 156 locus–trait associations, trans-ancestry 
fine-mapping identified 99% CSs with 50 or fewer variants  
(Fig. 4b, Supplementary Table 13). Consistent with the potential 
for more than 1 causal variant in a locus, 74 locus–trait associa-
tions contained 88 variants with PPA > 0.90 that were strong can-
didate causal variants (Supplementary Table 14). For example, 10 
are coding variants including several missense variants, such as the 
HBB Glu7Val variant mentioned above, GCKR Leu446Pro, RREB1 
Asp1771Asn, G6PC2 Pro324Ser, GLP1R Ala316Thr and TMPRSS6 
Val736Ala, each of which have been proposed or shown to affect 
gene function12,45–49. We additionally identified AMPD3 Val311Leu 
(PPA = 0.989) and TMC6 Trp125Arg (PPA > 0.999) variants associ-
ated with HbA1c that were previously detected in an exome array 
analysis but had not been fine-mapped with certainty due to the 
absence of backbone GWAS data50. Our fine-mapping data now 
suggest that these variants are likely causal and identify their cog-
nate genes as effector transcripts.

Finally, we evaluated the resolution obtained in the trans-ancestry 
versus single-ancestry fine-mapping (Methods, Supplementary 
Note). We compared the number of variants in 99% CS across 98 
locus–trait associations that—as suggested by FINEMAP—had 
a single causal variant in both trans-ancestry and single-ancestry 
analyses. Fine-mapping within and across ancestries was conducted 
using the same set of variants. At 8 out of 98 locus–trait associa-
tions, single-ancestry fine-mapping identified a single variant in the 
CSs. In addition, at 72 of the 98 locus–trait associations, the num-
ber of variants in the 99% CSs was smaller in the trans-ancestry 
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fine-mapping (Fig. 4c), which likely reflects the larger sample 
size and differences in LD structure, EAFs and effect sizes across 
diverse populations. To quantify the estimated improvement in 
fine-mapping resolution that is attributable to the multi-ancestry 
GWAS, we then compared 99% CS sizes from the trans-ancestry 
fine-mapping to single-ancestry-specific data emulating the same 
total sample size by rescaling the standard errors (Methods). Of the 
72 locus–trait associations with estimated improved fine-mapping 

in trans-ancestry analysis, resolution at 38 (53%) was improved 
because of the larger sample size in the trans-ancestry fine-mapping 
analysis (Fig. 4c), and this estimated improved resolution would 
likely have been obtained in a European-only fine-mapping effort 
with equivalent sample size. However, at 34 (47%) loci, the inclu-
sion of samples from multiple diverse populations yielded the esti-
mated improved resolution. On average, ancestry differences led to 
a reduction in the median number of variants in the 99% CSs from 
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Fig. 2 | Trait variance explained by associated loci. a–c, Results from an analysis of trait variance explained by associated loci for FG (a), FI (b) and HbA1c 
(c). The box plots show the maximum, first quartile, median, third quartile and minimum of trait variance explained when using a genetic score with 
single-ancestry lead and index variants (european (euR), African American (AA), east Asian (eAS), Hispanic (HISP) and Southeast Asian (SAS) ancestry) 
or a combination of trans-ancestry (TA) lead variants for individual traits and single-ancestry lead and index variants (TA + euR, TA + AA, TA + eAS, 
TA + HISP and TA + SAS). Variance explained in each ancestry is in different colors. Data points represent the variance explained in individual cohorts used 
in this analysis. Adjusted R2 was estimated in 1–11 cohorts with sample sizes ranging from 489 to 9,758 (Supplementary Tables 8–11).
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24 to 15 variants (37.5% median reduction; Fig. 4c), demonstrating 
the value of conducting fine-mapping analyses across ancestries.

HbA1c signal classification. HbA1c-associated variants can 
exert their effects on HbA1c levels through both glycemic and 
non-glycemic pathways7,51 and their correct classification can affect 
T2D diagnostic accuracy7,52. Using previous association results for 
other glycemic, RBC and iron traits, as well as a fuzzy clustering 
approach, we classified variants into their most likely mode of action 
(Methods, Supplementary Note). Of the 218 HbA1c-associated vari-
ants, 27 (12%) could not be characterized due to missing data and 
23 (11%) could not be classified into a ‘known’ class (Supplementary 
Note). The remaining signals were classified as principally: (1) gly-
cemic (n = 53; 24%); (2) affecting iron levels and/or iron metabo-
lism (n = 12; 6%); or (3) RBC traits (n = 103; 47%). A genetic risk 

score (GRS) composed of all HbA1c-associated signals was strongly 
associated with T2D risk (odds ratio (OR) = 2.4, 95% confidence 
interval (CI) = 2.3–2.5, P = 2.7 × 10−298). However, when using 
partitioned GRSs composed of these different classes of variants 
(Methods), we found that the T2D association was mainly driven 
by variants that influenced HbA1c through glycemic pathways 
(OR = 2.6, 95% CI = 2.5–2.8, P = 2.3 × 10−250), with weaker evidence 
of an association (despite the larger number of variants in the GRS) 
and a more modest risk (OR = 1.4, 95% CI = 1.2–1.7, P = 4.7 × 10−4) 
imparted by signals in the mature RBC cluster that were not glyce-
mic (that is, for which those specific variants had P > 0.05 for FI, 
2hGlu and FG) (Extended Data Fig. 6, Supplementary Note). This is 
in contrast with our previous finding in which we found no signifi-
cant association between a risk score of non-glycemic variants and 
T2D7. Our current results could be partly driven by cases of T2D 
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being diagnosed on the basis of HbA1c levels that may be influ-
enced by the non-glycemic signals, or by glycemic effects that are 
not captured by FI, 2hGlu or FG measures.

Biological signatures of glycemic-trait-associated loci. To better 
understand distinct and shared biological signatures underlying 
variant–trait associations, we conducted genomic feature enrich-
ment, expression quantitative trait loci (eQTL) co-localization, and 
tissue and gene-set enrichment analyses across all four traits.

Epigenomic landscape of trait-associated variants. We explored the 
genomic context that underlies glycemic trait loci by computing 
overlap enrichment for ‘static’ annotations such as coding regions, 
conserved regions and super enhancers merged across multiple 
cell types53–55 using the GREGOR tool56. We observed that FG, FI 
and HbA1c signals (Supplementary Table 7) were significantly 

(P < 8.4 × 10−4, Bonferroni threshold for 59 annotations) enriched 
in evolutionarily conserved regions (Fig. 5a, Extended Data Fig. 7, 
Supplementary Table 15).

We then considered epigenomic landscapes defined in indi-
vidual cell and/or tissue types. Previously, stretch enhancers (StrE; 
enhancer chromatin states that are ≥3 kb in length) in pancreatic 
islets were shown to be highly cell-specific and strongly enriched 
with T2D risk signals57. Considering StrEs across 31 cell types38, 
FG and 2hGlu signals showed the highest enrichment in islets 
(FG, fold enrichment = 4.70, P = 2.7 × 10−24; 2hGlu, fold enrich-
ment = 5.51, P = 3.6 × 10−4; Fig. 5a, Supplementary Table 16), high-
lighting the importance of islets for these traits. FI signals were 
enriched in skeletal muscle (fold enrichment = 3.17, P = 7.8 × 10−6) 
and adipose StrEs (fold enrichment = 3.27, P = 1.8 × 10−7), consis-
tent with the idea that these tissues are targets of insulin action 
(Fig. 5a). StrEs in individual cell types showed higher enrichment 
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Fig. 6 | Tissues and cell types that are significantly enriched in genes in loci associated with glycemic traits. Results of tissue and cell-type enrichment analysis 
for FG-associated loci (a), FI-associated loci (b) and HbA1c-associated loci (c). FDR thresholds are shown in red (q < 0.05), orange (q < 0.2) or black (q ≥ 0.2).
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than super enhancers merged across cell types, highlighting the 
importance of cell-specific analyses (Fig. 5a). HbA1c signals were 
enriched in StrEs of multiple cell types and tissues, but have the 
strongest enrichment in K562 leukemia-derived cells (fold enrich-
ment = 3.24, P = 1.2 × 10−7; Fig. 5a). Among the ‘hard’ glycemic 
and RBC (mature + reticulocyte) HbA1c signals, glycemic signals 
were enriched in islet StrEs (fold enrichment = 3.96, P = 3.7 × 10−16) 
whereas RBC signals were enriched in K562 StrEs (fold enrich-
ment = 7.5, P = 2.08 × 10−14; Fig. 5b, Supplementary Table 17). These 
analyses suggest that these glycemic-trait-associated variants influ-
ence the function of tissue-specific enhancers.

Independent analyses with fGWAS58 and GARFIELD59 yielded 
consistent results (Extended Data Figs. 8 and 9, Supplementary 
Tables 16 and 18). Notably, FI signals at a lenient threshold of 
P < 10−5 were enriched in liver StrEs using GARFIELD (OR = 1.92, 
P = 1.7 × 10−4) (Extended Data Fig. 9a). This suggests that liver regu-
latory annotations are relevant for FI GWAS signals, but that we lack 
the power to detect significant enrichment using the genome-wide 
significant loci and the current set of reference annotations.

We next explored the 27 loci that drive the FI enrichment in adi-
pose and skeletal muscle, 11 of which overlapped with StrEs in both 
tissues (Fig. 5c). At the COL4A2 locus, variants within an intronic 
region overlap with StrEs in adipose tissue, skeletal muscle and 
a human skeletal muscle myoblast (HSMM) cell line that are not 
shared across other cell or tissue types. Among these, rs9555695 (in 
the 99% CS) also overlaps with accessible chromatin regions in adi-
pose (Fig. 5d). At a narrow signal with no proxy variants (LD r2 > 0.7 
in individuals of European ancestry), the lead trans-ancestry variant 
rs62271373 (PPA = 0.94), which is located in an intergenic region 
around 25 kb from the LINC01214 gene, overlaps with StrEs that 
are specific to adipose and HSMM and an active enhancer chroma-
tin state in skeletal muscle (Fig. 5e). Collectively, the tissue-specific 
epigenomic signatures at GWAS signals provide an opportunity 
to nominate tissues in which these variants are likely to be active. 
This map may help future efforts to deconvolute GWAS signals into 
tissue-specific disease pathology.

Co-localization of GWAS and eQTLs. Among the 99 novel gly-
cemic trait loci, we identified co-localized eQTLs at 34 loci in 
blood, pancreatic islets, subcutaneous or visceral adipose, skel-
etal muscle or liver, providing suggestive evidence of causal genes 
(Supplementary Table 19). The co-localized eQTLs include several 
genes that have previously been reported at glycemic trait loci60–62: 
ADCY5, CAMK1D, IRS1, JAZF1 and KLF14. For some additional 
loci, the co-localized genes have previous evidence for a role in gly-
cemic regulation. For example, the lead trans-ancestry variant and 
likely causal variant—rs1799815 (PPA = 0.993)—that is associated 
with FI is the strongest variant associated with expression of INSR, 
which encodes the insulin receptor, in subcutaneous adipose from 
METSIM (P = 2 × 10−9) and GTEx (P = 5 × 10−6) datasets. The A 
allele at rs1799815 is associated with higher FI and lower expression 
of INSR, which is consistent with the relationship between insu-
lin resistance and reduced INSR function63. In a second example, 
rs841572, which is the trans-ancestry lead variant associated with 
FG, has the highest PPA (PPA = 0.535) among the 20 variants in the 
99% CS and is in strong LD (r2 = 0.87) with the lead eQTL variant 
(rs841576, also in the 99% CS) associated with SLC2A1 expression 
in blood (eQTLGen, P = 1 × 10−8). SLC2A1 (which is also known as 
GLUT1) encodes the major glucose transporter in brain, placenta 
and erythrocytes, and is responsible for glucose entry into the 
brain64. rs841572-A is associated with lower FG and lower SLC2A1 
expression. Although rare missense variants in SLC2A1 are an 
established cause of seizures and epilepsy65, our data suggest that 
SLC2A1 variants also affect plasma glucose levels within a popula-
tion. These co-localized signals provide possible regulatory mecha-
nisms for variant effects on genes that influence glycemic traits.

The co-localized eQTLs also provide insights into the mecha-
nisms of action of glycemic trait loci. For example, rs9884482 (in 
the 99% CS) is associated with FI and TET2 expression in subcuta-
neous adipose (P = 2 × 10−20); rs9884482 is in high LD (r2 = 0.96 in 
individuals of European ancestry) with the lead TET2 eQTL vari-
ant (rs974801). TET2 encodes a DNA demethylase that can affect 
transcriptional repression66. Tet2 expression in adipose is reduced 
after diet-induced insulin resistance in mice67, and knockdown of 
Tet2 blocked adipogenesis67,68. Furthermore, in human adipose tis-
sue, rs9884482-C was associated with lower TET2 expression and 
higher FI. In a second example, rs617948 is associated with HbA1c 
(in the 99% CS) and is the lead variant associated with C2CD2L 
expression in blood (eQTLGen, P = 3 × 10−96). C2CD2L (which is 
also known as TMEM24) encodes a protein that regulates pulsatile 
insulin secretion and facilitates release of insulin pool reserves69,70. 
rs617948-G was associated with higher HbA1c and lower C2CD2L, 
providing evidence for a role for this insulin secretion protein in 
glucose homeostasis. Our HbA1c ‘soft’ clustering assigned this 
signal to both the ‘unknown’ (0.51 probability) and ‘reticulocyte’ 
(0.42 probability) clusters. rs617948 is strongly associated with 
HbA1c (P < 6.8 × 10−8), but not with FG, FI or 2hGlu (P > 0.05; 
Supplementary Table 20, Supplementary Note). This suggests that 
there is an effect of this variant on reticulocyte biology and on insu-
lin secretion, potentially influencing HbA1c levels through different 
tissues and providing a plausible explanation for the classification  
as ‘unknown’.

Tissue expression. Consistent with effector transcript expression 
analysis using GTEx data50, we found considerable differences in 
tissue expression across the glycemic trait signals. FG signals were 
enriched for genes expressed in the pancreas (false-discovery rate 
(FDR) < 0.05), whereas there was an insufficient number of signifi-
cant associations in 2hGlu to identify enrichment for any tissue or 
cell type at a threshold of FDR < 0.2. FI signals were enriched in 
connective tissue and cells (which includes adipose tissue), endo-
crine glands, blood cells and muscles (FDR < 0.2) and HbA1c sig-
nals were significantly enriched in genes expressed in the pancreas, 
hemic and immune system (FDR < 0.05) (Fig. 6, Supplementary  
Table 21). Consistent with previous analysis50, FI enrichment in 
connective tissue was driven by adipose tissue (subcutaneous and 
visceral), whereas the newly described enrichment in endocrine 
glands was driven by the adrenal glands and cortex (Supplementary 
Table 21). In addition to enrichment in genes expressed in 
glycemic-related tissues, HbA1c signals were enriched in genes 
expressed in the blood, consistent with the role of RBCs in this trait 
and our previous results50.

The association between FI signals and genes expressed in adre-
nal glands is notable, suggesting a possible direct role for these 
genes in insulin resistance. These genes could influence cortisol lev-
els, which may contribute to insulin resistance and FI levels through 
impaired insulin receptor signaling in peripheral tissues, as well as 
influencing the distribution of body fat, stimulating lipolysis and 
affecting other indirect mechanisms71,72.

Gene-set analyses. Next, we performed gene-set analysis using 
DEPICT (Data-driven Expression-Prioritized Integration for 
Complex Traits) (Methods). In agreement with previous results50, 
we found distinct gene sets that were enriched (FDR < 0.05) in each 
glycemic trait except for 2hGlu, which had insufficient associations 
to have power in this analysis. FG-associated variants highlighted 
gene sets that are involved in metabolism and gene sets that are 
involved in general cellular functions, such as ‘cytoplasmic vesicle 
membrane’ and ‘circadian clock’ (Fig. 7a). By contrast, in addition 
to metabolism-related gene sets, FI-associated variants highlighted 
pathways that are related to growth, cancer and reproduction  
(Fig. 7b). This is consistent with the role of insulin as a mitogenic 
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hormone, and with epidemiological links between insulin and 
certain types of cancer73 and reproductive disorders such as poly-
cystic ovary syndrome74. HbA1c-associated variants highlighted 

many gene sets (Fig. 7c), including those linked to metabolism 
and hematopoiesis, again recapitulating our postulated effects of 
variants on glucose and RBC biology. Additional pathways from 
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HbA1c-associated variants also highlighted previous ‘CREBP 
protein–protein interactions’ and lipid biology related to T2D75 
and HbA1c76, respectively, and potential new biological pathways 
through which variants may influence HbA1c.

Discussion
Here we describe a large glycemic-trait meta-analysis of GWAS 
in which 30% of the population was composed of participants 
of East Asian, Hispanic, African American, South Asian and 
sub-Saharan African ancestry. This effort identified 242 loci (235 
trans-ancestry and seven single-ancestry), which jointly explained 
between 0.7% (2hGlu in individuals of European ancestry) and 6% 
(HbA1c in individuals of African American ancestry) of the vari-
ance in glycemic traits in any given ancestry. Although 114 out of 
242 loci are associated with T2D (P < 10−4; 83 loci with P < 5 × 10−8; 
Supplementary Table 4), the absence of strong evidence of associa-
tion for the remaining loci (P ≥ 10−4) suggests that for alleles with 
a frequency above 5% we can exclude T2D-associated OR ≥ 1.07 
with 80% power (ɑ = 5 × 10−8; and OR ≥ 1.05 for ɑ = 10−4) given 
a current study of 228,499 cases of T2D and 1,178,783 con-
trol individuals27. We identified 486 signals that were associated 
with glycemic traits, of which eight have minor allele frequency 
(MAF) < 1% and 45 have 1% ≤ MAF < 5% in all ancestries, high-
lighting that 89% of signals identified are common in at least one 
ancestry studied.

A key aim of our study was to evaluate the added advan-
tage of including population diversity in genetic discovery and 
fine-mapping efforts. In addition to the larger sample size included 
in the trans-ancestry meta-analysis, we were able to estimate the 
contribution of data from individuals of non-European ancestry in 
locus discovery and fine-mapping resolution. We found that 24 of 
the 99 newly discovered loci owe their discovery to the inclusion of 
data from participants of East Asian, Hispanic, African American, 
South Asian and sub-Saharan African ancestry, due to differences in 
EAF and effect sizes across ancestries.

Comparison of 295 trans-ancestry lead variants (315 locus–
trait associations) across ancestries demonstrated that between 
81.5% (HbA1c) and 85.7% (FG) of the trans-ancestry lead vari-
ants showed no evidence of trans-ancestry heterogeneity in allelic  
effects (P > 0.05).

Given sample size and power limitations, genome-wide signifi-
cant trait-associated variants in a single-ancestry analysis explain 
only a modest proportion of trait variance in that ancestry (Fig. 2). 
We demonstrate that trans-ancestry lead variants explain more trait 
variance than the ancestry-specific variants (Fig. 2). This shows that 
even though some trans-ancestry lead variants are not genome-wide 
significant in all ancestries, they contribute to the genetic architec-
ture of the trait in most ancestries.

We evaluated the transferability of glycemic-trait PGSs derived 
from data from individuals of European ancestry to other ances-
tries. In agreement with other traits35,77,78, we confirm that PGS 
derived from data from participants of European ancestry perform 
much worse when the test dataset is from a different ancestry. Each 
trait-specific PGS improves trait variance explained by between 
3.5-fold (HbA1c) and 6-fold (FG) in the European dataset (Fig. 3, 
Supplementary Table 12) compared with a score built from only 
trans-ancestry lead variants and European index variants (Fig. 2, 
Supplementary Tables 9–12).

Despite development of approaches to derive polygenic risk 
scores79, we note the difficulty in using summary level data to build 
a PGS in one ancestry and then apply it to test datasets of a different 
ancestry. Although PRS-CSauto33 is able to use summary-level data, 
revision of the effect size estimates to account for LD required refer-
ence panels that matched the ancestry of the test dataset. However, 
the current software lacks appropriate reference panels for many 
ancestries, precluding its broad application. Future developments 

of trans-ancestry PGSs are required for improved cross-ancestry 
performance.

We show that fine-mapping resolution is improved in 
trans-ancestry, compared with single-ancestry fine-mapping 
efforts. In around 50% of our loci, we showed that the improvement 
was due to differences in EAF, effect size or LD structure between 
ancestries, and not only due to the overall increased sample size 
that was available for trans-ancestry fine-mapping. By perform-
ing trans-ancestry fine-mapping, and co-localizing GWAS signals 
with eQTL signals and coding variants, we identified new candi-
date causal genes. Taken together, these results motivate continued 
expansion of genetic and genomic efforts in diverse populations to 
improve our understanding of these traits in groups that are dispro-
portionally affected by T2D.

Given data on four different glycemic traits and their use in the 
diagnosis and monitoring of T2D and metabolic health, we also 
sought to characterize biological features underlying these traits. 
We show that despite considerable sharing of loci across the four 
traits, each trait is also characterized by unique features based on 
StrE, gene expression and gene-set signatures. Combining genetic 
data from these traits with T2D data will further elucidate path-
ways that drive normal physiology and pathophysiology, and help 
to further develop useful predictive scores for disease classification  
and management4,5.
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Methods
Study design and participants. This study included trait data from four glycemic 
traits: FG, FI, 2hGlu and glycated HbA1c. The total number of contributing 
cohorts ranged from 41 (2hGlu) to 131 (FG), and the maximum sample size for 
each trait ranged from 85,916 (2hGlu) to 281,416 (FG) (Supplementary Table 1). 
Self-identified ancestry was initially defined at the cohort level, but within each 
cohort ancestry was confirmed with genetic data with ancestry outliers removed 
(Supplementary Table 1). Overall, participants of European ancestry dominated the 
sample size for all traits, representing between 68.0% (HbA1c) and 73.8% (2hGlu) 
of the overall sample size. Individuals of African American ancestry represented 
between 1.7% (2hGlu) and 5.9% (FG) of participants; individuals of Hispanic 
ancestry represented between 6.8% (FG) and 14.6% (2hGlu) of participants; 
individuals of East Asian ancestry represented between 9.9% (2hGlu) and 15.4% 
(HbA1c) of participants; and individuals of South Asian ancestry represented 
between 0% (no contribution to 2hGlu) and 4.4% (HbA1c) of participants. Data 
from participants of Ugandan ancestry were only available for the HbA1c analysis 
and represented 2% of participants.

Phenotypes. Analyses included data for FG and 2hGlu measured in mmol l−1, FI 
measured in pmol l−1 and HbA1c as a percentage (where possible, studies reported 
HbA1c as a National Glycohemoglobin Standardization Program percentage). 
Similar to previous MAGIC efforts7, individuals were excluded if they had type 1 
diabetes or T2D (defined according to a diagnosis by a physician); reported use of 
diabetes-relevant medication(s); or had a FG ≥ 7 mmol l−1, 2hGlu ≥ 11.1 mmol l−1 or 
HbA1c ≥ 6.5%, as described in Supplementary Table 1. 2hGlu measurements were 
obtained 120 min after a glucose challenge using an oral glucose-tolerance test. 
Measurements of FG and FI obtained from whole blood were corrected to plasma 
levels using the correction factor 1.13 as previously described80.

Genotyping, quality control and imputation. Each participating cohort 
performed study-level quality control (QC), imputation and association analyses 
following a shared analysis plan. Cohorts were genotyped using commercially 
available genome-wide arrays or the Illumina CardioMetabochip (Metabochip) 
array81 (Supplementary Table 1). Before imputation, each cohort performed 
stringent sample and variant QC to ensure only high-quality variants were kept 
in the genotype scaffold for imputation. Sample QC checks included removing 
samples with a low call rate less than 95%, extreme heterozygosity, sex mismatch 
with X chromosome variants, duplicates, first- or second-degree relatives (unless 
by design) or ancestry outliers. After sample QC, cohorts applied variant QC 
thresholds for call rate (less than 95%), Hardy–Weinberg equilibrium P < 1 × 10−6 
and MAF. Full details of QC thresholds and exclusions for the participating cohorts 
are available in Supplementary Table 1.

Imputation was performed up to the 1000 Genomes Project phase 1 (v.3) 
cosmopolitan reference panel82, with a small number of cohorts imputing up to 
the 1000 Genomes Project phase 3 panel19 or population-specific reference panels 
(Supplementary Table 1).

Study-level association analyses. Each of the glycemic traits (FG, natural 
log-transformed FI and 2hGlu) were regressed on BMI (except for HbA1c), 
study-specific covariates and principal components (unless implementing a 
linear mixed model). Analyses for FG, FI and 2hGlu were adjusted for BMI as 
we had previously shown that this did not materially affected the results for FG 
and 2hGlu but improved our ability to detect FI-associated loci15. For simplicity, 
we refer to the traits as FG, FI and 2hGlu. For a discussion on collider bias, see 
Supplementary Note section 2c. Both the raw and rank-based inverse-normal 
transformed residuals from the regression were tested for association with genetic 
variants using SNPTEST23 or Mach2Qtl83,84. Poorly imputed variants, defined as 
imputation r2 < 0.4 or INFO score < 0.4, were excluded from downstream analyses 
(Supplementary Table 1). After study-level QC, approximately 12,229,036 variants 
(GWAS cohorts) and 1,999,204 variants (Metabochip cohorts) were available for 
analysis (Supplementary Table 1).

Centralized QC. Each contributing cohort shared their summary statistic results 
with the central analysis group, who performed additional QC using EasyQC85. 
Allele-frequency estimates were compared to estimates from 1000 Genomces Project 
phase 1 reference panel82, and variants were excluded from downstream analyses if 
there was a MAF difference greater than 0.2 for populations of African American, 
European, Hispanic and East Asian ancestry compared with populations of African, 
European, Mexican and Asian ancestry from 1000 Genomes Project phase 1, 
respectively, or a MAF difference of more than 0.4 for individuals of South Asian 
ancestry compared with the population of European ancestry. At this stage, additional 
variants were excluded from each cohort file if they met one of the following criteria: 
were tri-allelic; had a MAC < 3; demonstrated a standard error of the effect size ≥ 10; 
or were missing an effect estimate, standard error or imputation quality. All data that 
passed QC (approximately 12,186,053 variants from GWAS cohorts and 1,998,657 
variants from Metabochip cohorts) were available for downstream meta-analyses.

Single-ancestry meta-analyses. Single-ancestry meta-analyses were performed 
within each ancestry group using the fixed-effects inverse-variance meta-analysis 

implemented in METAL20. We applied a double-genomic control correction15,86  
to both the study-specific GWAS results and the single-ancestry meta-analysis 
results. Study-specific Metabochip results were corrected by genomic control  
using 4,973 SNPs included on the Metabochip array for replication of associations 
with QT interval, a phenotype that is not correlated with the glycemic traits  
being analyzed15.

Identification of single-ancestry index variants. To identify distinct association 
index variants across each chromosome within each ancestry (Table 1), we 
performed approximate conditional analyses implemented in GCTA21 using the 
--cojo-slct option (autosomes) and distance-based clumping (X chromosome). 
LD correlations for GCTA were estimated from a representative cohort from 
each ancestry: Women’s Genome Health Study (European); China Health and 
Nutrition Survey (East Asian); Singapore Indian Eye Study (South Asian); BioMe 
(African American); Study of Latinos (Hispanic) and Uganda (for itself). The 
results from the GCTA were comparable when using alternative cohorts as the LD 
reference. For any index variant with a QC flag that caused reason for concern, 
we performed manual inspection of forest plots to decide whether the signal was 
likely to be real (Supplementary Note). Among 335 single-ancestry index variants 
across all traits, this manual inspection was done for 40 signals of which 32 passed 
and 8 failed after inspection. Thus, a total of 327 single-ancestry index variants 
passed and 8 failed.

Trans-ancestry meta-analyses. To leverage power across all ancestries, we 
also conducted trait-specific trans-ancestry meta-analysis by combining the 
single-ancestry meta-analysis results using MANTRA87 (Supplementary Note). We 
defined log10[BF] > 6 as genome-wide significant, approximately comparable to 
P < 5 × 10−8.

Manual curation of trans-ancestry lead variants. To ensure that trans- 
ancestry lead variants were robust, we performed manual inspection of forest  
plots by at least two authors, for any variants with flags that indicated possible  
QC issues (Supplementary Note). Of 463 trans-ancestry lead variants across all 
traits, 184 passed without inspection, 131 passed after inspection and 148 failed 
after inspection.

Comparison of trans-ancestry lead variants across ancestries. For each pair of 
ancestries, we calculated Pearson’s correlations in EAFs for each trans-ancestry lead 
variant. The pairwise summarized heterogeneity of effect sizes between ancestries 
was then tested using a joint F-test of heterogeneity31. The test statistic is the sum of 
Cochran Q-statistics for heterogeneity across all trans-ancestry signals. Under the 
null hypothesis, the statistics follows a χ2 distribution with n degrees of freedom, 
where n is the number of the trans-ancestry lead variants.

LD-pruned variant lists. Several downstream analyses (for example, genomic 
feature enrichment, genetic scores and estimation of variance explained by 
associated variants) require independent LD-pruned variants (r2 < 0.1) to avoid 
double-counting variants that might otherwise be in LD with each other and that 
do not provide additional ‘independent’ evidence. Therefore, for these analyses 
we generated different lists of either trans-ancestry or single-ancestry LD-pruned 
(r2 < 0.1) variants, retaining—in each case—the variant with the strongest evidence 
of association (Supplementary Table 7). Subsequently, we combined trans-ancestry 
and single-ancestry variant lists and conducted further LD pruning. For some 
analyses, we took the trans-ancestry-pruned variant list and added single-ancestry 
signals if the LD r2 < 0.1, whereas for others we started with the single-ancestry 
pruned lists and supplemented with trans-ancestry lead variants if the LD r2 < 0.1. 
One exception was the list used for eQTL co-localizations, which included all 
single-ancestry European signals (without LD pruning) and supplemented 
with any additional trans-ancestry lead variants (starting from the variants 
with the most significant P values) with LD r2 < 0.1 for data from individuals of 
European ancestry with any of the variants already in list, and that reached at least 
P < 1 × 10−5 in the meta-analysis of individuals of European ancestry.

Trait variance explained by associated loci. To determine how much of the 
phenotypic variance of each trait could be explained by the corresponding 
trait-associated loci, variants were combined in a series of weighted genetic scores. 
The analysis was performed in a subset of the cohorts included in the discovery 
GWAS (with representation from each ancestry) and in a smaller number of 
independent cohorts (European ancestry only). Up to three different genetic 
scores were derived per trait (and for each ancestry) to evaluate the potential for 
the trans-ancestry meta-GWAS-identified loci to provide additional information 
above and beyond that contributed by the ancestry-specific meta-analysis 
results. These genetic scores comprised: list A, single-ancestry signals; list B, 
single-ancestry signals plus trans-ancestry signals; and list C, trans-ancestry signals 
plus single-ancestry signals (Supplementary Table 7). In the case of the cohorts 
of individuals of European ancestry that contributed to the GWAS, we used a 
previously published method32 to adjust the effect sizes (β values) from the GWAS 
for the contribution of that cohort, providing sets of cohort-specific effect sizes 
that were then used to generate the genetic scores. The association between each 
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genetic score and its corresponding trait was tested by linear regression and the 
adjusted R2 from the model was extracted as an estimate of the variance explained.

Transferability of PGSs across ancestries. We used the PRS-CSauto33 software to 
first build PGSs derived from data from individuals of European ancestry for 
each glycemic trait (FG, FI, 2hGlu and HbA1c) on the basis of the summary 
statistics. However, PRS-CSauto does not perform well when the training dataset 
is relatively small and the genetic architecture is sparse33. As a consequence, 2hGlu 
was excluded from this analysis. For each trait, to obtain training and test datasets 
for populations of European ancestry, we first removed all cohorts only genotyped 
on the Metabochip that were not included in this analysis. From the remaining 
cohorts we then removed five of the largest cohorts of European ancestry that 
contributed to the respective meta-analysis of data of populations of European 
ancestry. For each trait, these five cohorts were meta-analyzed and used as the test 
dataset of individuals of European ancestry. Subsequently, the remaining cohorts 
comprising individuals of European ancestry were also meta-analyzed and used 
as the training dataset of individuals of European ancestry. For each of the other 
ancestries, cohorts only genotyped on the Metabochip were also removed, and the 
remaining cohorts were meta-analyzed, and used as the test datasets of populations 
of non-European ancestry. Variants that had MAF < 0.05 or that were missing 
in over half of the individuals in the training dataset were removed33,88. The PGS 
for each trait was built using PRS-CSauto with default settings33 with the effect 
size estimates based on the training dataset of individuals of European ancestry 
being revised based on an LD reference panel that matched the test dataset. The 
proportion of the trait variance explained by the PGS derived from data from 
individuals of European ancestry (R2) was estimated using the R package ‘gtx’34 on 
the basis of the revised effect sizes and summary statistics from the test dataset for 
each ancestry.

Fine-mapping. Of the 242 loci identified in this study, 237 were autosomal loci that 
we took forward for fine-mapping (Supplementary Table 2). We used the Bayesian 
fine-mapping method FINEMAP89 (v.1.1) to refine association signals and attempt 
to identify likely causal variants at each locus. FINEMAP estimates the maximum 
number of causal variants at each locus, calculates the posterior probability of 
each variant being causal and proposes the most likely configuration of causal 
variants. The posterior probabilities of the configurations in each locus were used 
to construct 99% CSs.

We performed both single-ancestry and trans-ancestry fine-mapping. In 
both analyses, only data from cohorts genotyped on GWAS arrays were used, and 
analyses were limited to trans-ancestry lead variants and other single-ancestry 
lead variants that were present in at least 90% of the samples for each trait. For 
the single-ancestry fine-mapping, FINEMAP estimates the number of causal 
variants in a region up to a maximum number, which we set to be two plus the 
number of distinct signals identified from the GCTA signal selection. FINEMAP 
uses single-ancestry and trait-specific z-scores from the fixed-effect meta-analysis 
in METAL20 and an ancestry-specific LD reference, which we created from a 
subset of cohorts (combined sample size of more than 30% of the sample size 
for that ancestry), weighting each cohort by sample size. In the trans-ancestry 
fine-mapping analysis, FINEMAP was similarly used to estimate the number 
of causal variants starting with two, and trait-specific z-scores and LD maps 
were generated from the sample-size-weighted average of those used in the 
single-ancestry fine-mapping. The maximum number of causal variants was 
iteratively increased by one until it was larger than the number of causal variants 
supported by data (Bayes factor), which was the estimated maximum number of 
causal variants used in the final run of the fine-mapping analysis.

To compare fine-mapping results obtained from the single-ancestry and 
trans-ancestry efforts, analyses were limited to fine-mapping regions with evidence 
for a single likely causal variant in both, enabling a straightforward comparison of 
CSs (Supplementary Note). To ensure any difference in the fine-mapping results 
was not driven by different sets of variants being present in the different analyses, 
we repeated the single-ancestry fine-mapping limited to the same set of variants 
used in the trans-ancestry fine-mapping. The fine-mapping resolution was assessed 
on the basis of comparisons of the 99% CSs in terms of the number of variants 
included in the set and length of the region. To assess whether the improvement 
in the trans-ancestry fine-mapping was due to differences in LD, increased sample 
size or both, we repeated the trans-ancestry fine-mapping mimicking the sample 
size present in the single-ancestry fine-mapping by dividing the standard errors by 
the square root of the sample size ratio and compared the results with those from 
the single-ancestry fine-mapping.

Functional annotation of trait-associated variants. HbA1c signal classification. 
There were 218 HbA1c-associated signals from either the single-ancestry (that is all 
GCTA signals from any ancestry) or trans-ancestry meta-analyses. To classify these 
signals in terms of their likely mode of action (that is, glycemic, erythrocytic or 
other7), we examined association summary statistics for the lead variants at the 218 
signals in other large datasets of individuals of European ancestry for 19 additional 
traits: three glycemic traits from this study (FG, 2hGlu and FI); seven mature RBC 
traits90,91 (RBC count, mean corpuscular volume, hematocrit, mean corpuscular 
hemoglobin, mean corpuscular hemoglobin concentration, hemoglobin 

concentration and RBC distribution width); five reticulocyte traits (reticulocyte 
count, reticulocyte fraction of RBCs, immature fraction of reticulocytes, high 
light-scatter reticulocyte count and high light-scatter percentage of RBCs)90,91, 
and four iron traits (serum iron, transferrin, transferrin saturation and ferritin)92. 
Of the 218 HbA1c signals, data were available for the lead (n = 183) or proxy 
(European LD r2 > 0.8, n = 8) variants for 191 signals.

The additional traits were clustered using hierarchical clustering to ensure 
biologically related traits would cluster together (Supplementary Note). We then 
used a non-negative matrix factorization93 process to cluster the HbA1c signals. 
Each cluster was labeled as glycemic, reticulocyte, mature RBC or iron-related 
based on the strength of association of the signals in the cluster to the glycemic, 
reticulocyte, mature RBC and iron traits (Supplementary Note). To verify that our 
cluster naming was correct, we used HbA1c association results conditioned on 
either FG or iron traits or T2D association results (Supplementary Note).

HbA1c GRSs and T2D risk. We constructed GRSs for each cluster of 
HbA1c-associated signals (based on hard clustering) and tested the association of 
each cluster with T2D risk using samples from the UK Biobank. Pairs of HbA1c 
signals in LD (European r2 > 0.10) were LD-pruned by removing the signal with 
the less-significant P value of association with HbA1c. The GRS for each cluster 
was calculated on the basis of the logarithm of the ORs from the latest T2D 
study summary statistics94 and UK Biobank genotypes imputed in the Haplotype 
Reference Consortium19. From 487,409 UK Biobank samples (age between 46 and 
82 years; 55% female), we excluded participants for the following reasons: 373 
with mismatched sex; 9 not used in the kinship calculation; 78,365 individuals 
of non-European ancestry; and 138,504 with missing T2D status, age or sex 
information. We further removed 26,896 related participants (kinship > 0.088, 
preferentially removing individuals with the largest number of relatives and 
control individuals for whom a case of T2D was related to that control individual). 
Individuals with T2D were defined as: (1) a history of diabetes without metformin 
or insulin treatment; (2) self-reported diagnosis of T2D; or (3) diagnosis of T2D 
in a national registry (n = 17,022; age between 47 and 79 years; 36% female). 
Control individuals were participants without a history of T2D (n = 226,240; age 
between 46 and 82 years; 56% female). We tested for associations between each 
GRS and T2D using logistic regression including covariates for age, sex and the 
first five principal components. The significance of the associations was evaluated 
by a bootstrap approach to incorporate the variance of each HbA1c-associated 
signal in the T2D summary data. To do this, we generated the GRS of each cluster 
200 times by resampling the logarithm of the OR of each signal with T2D. For each 
non-glycemic class that had a GRS that was significantly associated with T2D, 
we performed sensitivity analyses to evaluate whether the association was driven 
by variants that also belonged to a glycemic cluster when using a soft clustering 
approach (the signals were classified as also glycemic in the soft clustering or had 
an association P ≤ 0.05 with any of the three glycemic traits).

Chromatin states. To identify genetic variants within association signals 
that overlapped predicted chromatin states, we used a previously published, 
13-chromatin-state model that included 31 diverse tissues, including pancreatic 
islets, skeletal muscle, adipose and liver38. In brief, this model was generated from 
cell and tissue chromatin immunoprecipitation–sequencing data for H3K27ac, 
H3K27me3, H3K36me3, H3K4me1 and H3K4me3, and input control from a 
diverse set of publicly available data53,57,95,96 using the ChromHMM program97. As 
reported previously38, StrEs were defined as contiguous enhancer chromatin state 
(active enhancer 1 and 2, genic enhancer and weak enhancer) segments that were 
longer than 3 kb (ref. 57).

Enrichment of genetic variants in genomic features. We used GREGOR (v.1.2.1) to 
calculate the enrichment of GWAS variants that overlapped static annotations and 
StrEs56. To calculate the enrichment of glycemic-trait-associated variants in these 
annotations, we used the filtered list of trait-associated variants as described above 
(Supplementary Table 7) as input. To calculate the enrichment of sub-classified 
HbA1c variants, we included the list of loci characterized as glycemic, another 
list of loci characterized as reticulocyte or mature RBC—which collectively 
represented the RBC fraction—along with lists of iron-related or unclassified 
loci (Supplementary Table 17). We used the following parameters in GREGOR 
enrichment analyses: European r2 threshold (for inclusion of variants in LD 
with the lead variant) = 0.8, LD window size = 1 Mb, and minimum neighbour 
number = 500.

We used fGWAS (v.0.3.6)58 to calculate the enrichment of 
glycemic-trait-associated variants in static annotations and StrEs using 
summary-level GWAS results. We used the default fGWAS parameters for 
enrichment analyses for individual annotations for each trait. For each annotation, 
the model provided the natural logarithm of the maximum likelihood estimate 
of the enrichment parameter. Annotations were considered to be significantly 
enriched if the log2[parameter estimate] value and respective 95% confidence 
intervals were above zero or significantly depleted if the log2[parameter estimate] 
value and respective 95% confidence intervals were below zero.

We tested the enrichment of trait-associated variants in static annotations and 
StrEs with GARFIELD (v.2)59. We formatted annotation overlap files as required 
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by the tool; prepared input data at two GWAS thresholds—a threshold of 1 × 10−5 
and a more stringent threshold of 1 × 10−8—by pruning and clumping with default 
parameters (garfield-prep-chr script). We calculated enrichment in each individual 
annotation using garfield-test.R with --c option set to 0. We also calculated the 
effective number of annotations using the garfield-Meff-Padj.R script. We used 
the effective number of annotations for each trait to obtain Bonferroni-corrected 
significance thresholds for enrichment of each trait.

eQTL analyses. To aid in the identification of candidate casual genes associated with 
the European-only and trans-ancestry association signals, we examined whether 
any of the lead variants associated with glycemic traits (Supplementary Table 7) 
were also associated with the expression level (FDR < 5%) of nearby transcripts 
located within 1 Mb using existing eQTL datasets of blood, subcutaneous adipose, 
visceral adipose, skeletal muscle and pancreatic islet samples60,61,98–101. The LD was 
estimated from the collected cohort pairwise LD information, where available, 
and otherwise from the samples of individuals of European ancestry from 1000 
Genomes Project phase 3. GWAS and eQTL signals likely co-localize when the 
GWAS variant and the variant most strongly associated with the expression level 
of the corresponding transcript (eSNP) exhibit high pairwise LD (r2 > 0.8; 1000 
Genomes Project phase 3, European ancestry). For these signals, we conducted 
reciprocal conditional analyses to test associations between the GWAS variant and 
transcript level when the eSNP was also included in the model, and vice versa. We 
report GWAS and eQTL signals as co-localized if the association for the eSNP was 
not significant (FDR ≥ 5%) when conditioned on the GWAS variant; we also report 
signals from the eQTLGen whole-blood meta-analysis data that meet only the LD 
threshold because conditional analysis was not possible.

Tissue and gene-set analysis. We performed enrichment analysis using DEPICT 
v.3, which was specifically developed for the imputed meta-analysis data of the 
1000 Genomes Project102 to identify cell types and tissues in which genes of 
trait-associated variants were strongly expressed, and to detect enrichment of 
gene sets or pathways. DEPICT data included human gene-expression data for 
19,987 genes in 10,968 reconstituted gene sets, and 209 tissues and/or cell types. 
Because gene-expression data in DEPICT is based on samples of individuals of 
European ancestry and LD, we selected trait-associated variants with P < 10−5 
in the meta-analysis of data of individuals of European ancestry and tested for 
enrichment of signals in each reconstituted gene set, and each tissue or cell type. 
Enrichment results with FDR < 0.05 were considered to be significant. We ran 
DEPICT on the basis of the association results for all traits among: (1) cohorts 
with genome-wide data; or (2) all cohorts (genome-wide and Metabochip 
cohorts). Because results were broadly consistent between the two approaches, 
we present results from the analysis that contained all cohorts as it had greater 
statistical power.

Statistics and reproducibility. Sample size. No statistical method was used to 
predetermine sample size. We aimed to bring together the largest possible sample 
size with GWAS data from individuals of diverse ancestries (European, Hispanic, 
African American, East Asian, South Asian and sub-Saharan African) without 
diabetes and with data for one or more of the following traits: FG, FI, 2hGlu and 
HbA1c. The sample sizes were 281,416 (FG), 213,650 (FI), 215,977 (HbA1c) and 
85,916 (2hGlu) (Supplementary Table 1). Our sample size was sufficiently powered 
to detect common variant associations for each of the glycemic traits and was able 
to detect associations at 242 loci.

Randomization and blinding. This is a study of continuous traits and there were 
therefore no experiments to randomize and no ‘outcome’ to which investigators 
needed to be blinded to.

Data exclusions. Before conducting this study, we identified reasons for which data 
should be excluded from the analysis at either the cohort or summary level; these 
exclusions are as follows. Sample QC checks included removing samples with low 
call rate less than 95%, extreme heterozygosity, sex mismatch with X chromosome 
variants, duplicates, first- or second-degree relatives (unless by design) or ancestry 
outliers. Following sample QC, cohorts applied variant QC thresholds for call 
rate (less than 95%), Hardy–Weinberg equilibrium P < 1 × 10–6 and MAF. Full 
details of QC thresholds and exclusions by participating cohorts are available 
in Supplementary Table 1. Each contributing cohort shared their summary 
statistic results with the central analysis group, who performed additional QC 
using EasyQC. Allele-frequency estimates were compared with estimates from 
the 1000 Genomes Project phase 1 reference panel, and variants were excluded 
from downstream analyses if there was a MAF difference of more than 0.2 for 
populations of African American, European, Hispanic and East Asian ancestry 
compared with populations of African, European, Mexican and Asian ancestry 
from 1000 Genomes Project phase 1, respectively, or a MAF difference of more 
than 0.4 for individuals of South Asian ancestry compared with populations of 
European ancestry. At this stage, additional variants were excluded from each 
cohort file if they met one of the following criteria: were tri-allelic; had a MAC < 3; 
demonstrated a standard error of the effect size ≥ 10; imputation r2 < 0.4 or INFO 
score < 0.4; or were missing an effect estimate, standard error or imputation quality.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Ancestry-specific and overall meta-analysis summary level results are available 
through the MAGIC website (https://www.magicinvestigators.org/). Summary 
statistics are also available through the GWAS catalog (https://www.ebi.ac.uk/
gwas/) with the following accession codes: GCST90002225, GCST90002226, 
GCST90002227, GCST90002228, GCST90002229, GCST90002230, 
GCST90002231, GCST90002232, GCST90002233, GCST90002234, 
GCST90002235, GCST90002236, GCST90002237, GCST90002238, 
GCST90002239, GCST90002240, GCST90002241, GCST90002242, 
GCST90002243, GCST90002244, GCST90002245, GCST90002246, 
GCST90002247 and GCST90002248.

code availability
Source code implementing the methods described in the paper are publicly 
available at https://doi.org/10.5281/zenodo.4607311.
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Extended Data Fig. 1 | Flow diagram of this study. The figure shows the data, key methods and main analyses included in this effort.
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Extended Data Fig. 2 | Locus diagram. Trans-ancestry locus A contains a trans-ancestry lead variant for one glycemic trait represented by the blue 
diamond, and another single-ancestry index variant for another glycemic trait represented by the orange triangle. Single-ancestry locus B contains a 
single-ancestry lead variant represented by the purple square. The orange, blue and purple bars represent a +/− 500Kb window around the orange, 
blue, and purple variants, respectively. The black bars indicate the full locus window where trans-ancestry locus A contains trans-ancestry lead and 
single-ancestry index variants for two traits and single-ancestry locus B has a single-ancestry lead variant for a single trait.
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Extended Data Fig. 3 | Venn diagram. Overlap of TA loci between traits.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | allele frequency versus effect size. Allele frequency versus effect size for all signals detected through the trans-ancestry meta-
analyses, for each of the four traits. Frequency and effect size are from the european meta-analyses. The power curves were computed based on the 
european sample size for each trait, and the mean (m) and standard deviation (sd) computed on the FenLAnD study: FG, m = 4.83 mmol/l, sd=0.68; FI, 
m = 3.69 mmol/l, sd=0.60; 2hGlu, m = 5.30 mmol/l, sd=1.74; HbA1c, m = 5.55%, sd=0.48.
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Extended Data Fig. 5 | eaF correlation and heterogeneity test. Pearson correlation of eAF on the lower tri-angle and p-value of one-side heterogeneity 
test without multiple testing corrections on the upper tri-angle of the trans-ancestry lead variants associated with each trait between ancestries. 
Correlations > 0.7 are in bold.
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Extended Data Fig. 6 | Forest plot of T2D GRs from Hba1c variants. The p-value on the right side is from the two-side test without multiple testing 
corrections. Vertical points of each diamond represent the point estimate of the odds ratio. The horizontal points of each diamond represent the 95% 
confidence interval of the odds ratio. Figure shows the association results between HbA1c-associated variants built into a GRS for T2D by taking each 
HbA1c-associated variant and using a weight that corresponds to its T2D effect size (logOR) based on analysis by the DIAGRAM consortium. The overall 
GRS is subsequently partitioned according to the HbA1c signal classification. The overall and partitioned GRS were tested for association with T2D based 
on data from uK biobank.
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Extended Data Fig. 7 | enrichment of glycemic trait associated GWas variants to overlap genomic annotations using GReGOR. Figure shows enrichment 
for 59 total static and stretch enhancer annotations considered. One-side test significance (red) is determined after Bonferroni correction to account for 
59 total annotations tested for each trait; nominal significance (P < 0.05) is indicated in yellow.
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Extended Data Fig. 8 | enrichment of glycemic trait associated GWas variants to overlap genomic annotations using fGWas. Figure shows log2(Fold 
enrichment) of GWAS variants to overlap 59 static and stretch enhancer annotations calculated. Significant enrichment (red) is considered if the 95% 
confidence intervals (shown by the error bars) do not overlap 0.
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Extended Data Fig. 9 | enrichment of glycemic trait associated GWas variants to overlap genomic annotations using GaRFieLD. Figure shows the β or 
effect size (log odds ratio) for GWAS variants to overlap 59 static and stretch enhancer annotations. GWAS variants were included at two significance 
thresholds, 1e-05 (A) and 1e-08 (B). One-side test significance (red) is determined after Bonferroni correction to account for effective annotations tested 
for each trait reported by GARFIeLD (see Supplementary note); nominal significance (P < 0.05) is indicated in yellow. The 95% confidence intervals are 
shown by the error bars.
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