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The trans-ancestral genomic architecture of
glycemic traits

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic

studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association
studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose,

2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry

and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10-8), 80% of which had no significant evidence of
between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would
have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced
the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set
analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results

increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.

lenge (2hGlu), and glycated hemoglobin (HbA1c) are glycemic

traits that are used to diagnose diabetes'. In addition, HbAlc
is the most commonly used biomarker to monitor glucose control
in patients with diabetes. Fasting insulin (FI) reflects a combination
of insulin secretion and insulin resistance, both of which are com-
ponents of type 2 diabetes (T2D); it also reflects insulin clearance’.
Collectively, all four glycemic traits are useful to better understand
T2D pathophysiology’~ and cardiometabolic outcomes®.

To date, genome-wide association studies (GWAS) and analyses
of Metabochip and exome arrays have identified more than 120loci
associated with glycemic traits in individuals without diabetes’.
However, despite considerable differences in the prevalence of T2D
risk factors across ancestries'*"*, most GWAS of glycemic traits have
insufficient representation of individuals of non-European ancestry.
Additionally, they have limited resolution for fine-mapping of causal
variants and for the identification of effector transcripts. Here we
present large-scale trans-ancestry meta-analyses of GWAS for four
glycemic traits in individuals without diabetes. We aimed to identify
additional glycemic-trait-associated loci; investigate the portability
of loci and genetic scores across ancestries; leverage differences in
effect allele frequency (EAF), effect size and linkage disequilibrium
(LD) across diverse populations to conduct fine-mapping and aid
the identification of causal variants and/or effector transcripts; and
compare the genetic architecture of glycemic traits to further iden-
tify the cell types and target tissues that are influenced the most by
the traits that inform T2D pathophysiology.

Fasting glucose (FG), 2-h glucose after an oral glucose chal-

Results

Study design and definitions. To identify loci associated with glyce-
mic traits (FG, 2hGlu, Fl and HbAIc), we aggregated GWAS in up to
281,416 individuals without diabetes, approximately 30% of whom
were of non-European ancestry (13% East Asian, 7% Hispanic, 6%
African American, 3% South Asian and 2% sub-Saharan African
(Ugandan data were only available for HbAlc)). Each cohort
imputed data to the 1000 Genomes Project reference panel
(phase 1 v.3, March 2012 or later; Methods, Supplementary Table 1,
Extended Data Fig. 1, Supplementary Note). Up to around 49.3 mil-
lion variants were directly genotyped or imputed, with between
38.6 million (2hGlu) and 43.5million variants (HbAlc) available

for analysis after exclusions based on minor allele count (MAC) <3
and imputation quality (imputation r* or INFO score < 0.40) in each
cohort. FG, 2hGlu and FI analyses were adjusted for body-mass
index (BMI)" but for simplicity they are abbreviated as FG, 2hGlu
and FI (Methods).

We first performed trait-specific fixed-effect meta-analyses
within each ancestry using METAL?* (Methods). We defined
‘single-ancestry lead’ variants as the strongest trait-associated vari-
ants (P<5x107®) within a 1 Mb region in an ancestry (Table 1).
Within each ancestry and each autosome, we used approximate con-
ditional analyses in genome-wide complex trait analysis (GCTA)*"*
to identify ‘single-ancestry index variants (P<5x107%) that
exert conditionally distinct effects on the trait (Table 1, Methods,
Supplementary Note). This approach identified 124 FG, 15 2hGlu,
48 FI and 139 HbAIc variants that were significant in at least one
ancestry (Supplementary Table 2).

Next, we conducted trait-specific trans-ancestry meta-analyses
using MANTRA (Methods, Supplementary Table 1, Supplementary
Note) to identify genome-wide significant ‘trans-ancestry lead
variants, defined as the most-significant trait-associated variant
across all ancestries (log, [Bayes factor (BF)]>6, equivalent to
P<5x107%)* (Table 1, Methods). Here, we present trans-ancestry
results as our primary results (Supplementary Table 2).

Causal variants are expected to affect related glycemic traits
and may be shared across ancestries. Therefore, we combined all
single-ancestry lead variants, single-ancestry index variants and/or
trans-ancestry lead variants (for any trait) mapping within 500kb
of each other into a single ‘trans-ancestry locus’ bounded by 500 kb
flanking sequences (Table 1, Extended Data Fig. 2). As defined in
Table 1, a trans-ancestry locus may contain multiple causal variants
that affect one or more glycemic traits, exerting their effect in one
or more ancestry.

Glycemic trait locus discovery. Trans-ancestry meta-analyses
identified 235 trans-ancestry loci, of which 59 contained lead
variants for more than one trait. In addition, we identified seven
‘single-ancestry loci’ that did not contain any trans-ancestry lead
variants (Table 1, Supplementary Table 2). Of the 242 combined
loci, 99 (including 6 of the 7 single-ancestry loci) had not previously
been associated with any of the four glycemic traits or with T2D at
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Table 1| Glossary of terms

Term Definition

Effect allele The effect allele was the allele defined by METAL based on trans-ancestry FG results and aligned such that the same allele
was kept as the effect allele across all ancestries and traits, irrespective of its allele frequency or effect size for that particular

ancestry and trait. In this way, the effect allele is not necessarily the trait-increasing allele.

The variant with the smallest P value among all variants with P<5x 108 within a 1Mb region, based on the analysis of a single
trait in a single ancestry.

Single-ancestry
lead variant

Variants identified by GCTA of each autosome as exerting conditionally distinct effects on a given trait in a given ancestry
(P<5x1078). As defined, these include the single-ancestry lead variants.

Single-ancestry
index variants

The variant identified by trans-ancestry meta-analysis of a given trait that has the strongest association for that trait
(log,[BF]1> 6, which is broadly equivalent to P<5x10-8) within a TMb region.

Trans-ancestry
lead variant

The TMb region centered on a single-ancestry lead variant that does not contain a lead variant identified in the trans-ancestry
meta-analysis (that is, does not contain a trans-ancestry lead variant).

Single-ancestry locus

Conditionally independent association between a trait and a set of variants in LD with each other and that is noted by the
corresponding index variant.

Signal

A genomic interval that contains trans-ancestry trait-specific lead variants, with or without additional single-ancestry index
variants, for one or more traits. This region is defined by starting at the telomere of each chromosome and selecting the first
single-ancestry index variant or trans-ancestry lead variant for any trait. If other trans-ancestry lead variants or single-ancestry
index variants mapped within 500 kb of the first signal, they were merged into the same locus. This process was repeated until
there were no more signals within 500 kb of the previous variant. A 500 kb interval was added to the beginning of the first signal,
and the end of the last signal to establish the final boundary of the trans-ancestry locus (Extended Data Fig. 2). As defined, a
trans-ancestry locus may not have a single lead trans-ancestry variant, but may instead contain multiple trans-ancestry lead
variants, one for each trait.

Trans-ancestry locus

This study combined analyses of trait associations across multiple correlated glycemic traits and across multiple ancestries, which has presented challenges in our ability to apply commonly used terms

with clarity. For this reason, we define terms often used in the field with variable meaning and provide definitions for new terms used in this study.

the time of analysis (Fig. 1, Supplementary Table 3, Supplementary
Note). However, based on recent East Asian and trans-ancestry T2D
GWAS meta-analyses”~?, the lead variants at 27 of the 99 novel
glycemic trait loci have strong evidence of association with T2D
(P<107% 13loci with P<5x107%), suggesting that they are also
important in T2D pathophysiology (Supplementary Tables 2 and 4).

Of the six single-ancestry novel loci, three were unique to indi-
viduals of non-European ancestry (Supplementary Table 3). An
association with individuals of African American ancestry for FI
(lead variant rs12056334) near LOC100128993 (an uncharacterized
RNA gene; Supplementary Note), an association with individuals of
African American ancestry for FG (lead variant rs61909476) near
ETSI and an association with individuals of Hispanic descent for
FG (lead variant rs12315677) within PIK3C2G (Supplementary
Table 3) were found. Despite broadly similar EAFs across ancestries,
1rs61909476 was significantly associated with FG only in individu-
als of African American descent (EAF~7%, f=0.0812mmoll-,
s.e.=0.01mmoll™, P=3.9%x10"* compared with EAF=10-17%,
$=0-0.002mmoll~!, s.e.=0.003-0.017 mmoll~!, P=0.44-0.95 in
all other ancestries; Supplementary Table 2, Supplementary Note).
The nearest protein-coding gene, ETSI, encodes a transcription
factor that is expressed in mouse pancreatic p-cells, and its over-
expression decreases glucose-stimulated insulin secretion in mouse
islets?. Located within the PIK3C2G gene, rs12315677 has an 84%
EAF in individuals of Hispanic descent (70-94% in other ances-
tries) and is significantly associated with FG in this ancestry alone
(#=0.0387mmoll™}, s.e.=0.0075mmoll"!, P=4.0x10"* com-
pared with f=-0.0128-0.010 mmoll~', s.e.=0.003-0.018 mmol 1™,
P=0.14-0.76 in all other ancestries; Supplementary Note). In mice,
deletion of Pik3c2g leads to a phenotype characterized by reduced
glycogen storage in the liver, hyperlipidemia, adiposity and insulin
resistance with increasing age or after a high-fat diet”. Instances of
similar EAFs but differing effect sizes between populations could
be due to genotype-by-environment or other epistatic effects.
Alternatively, lower imputation accuracy in smaller sample sizes
could deflate effect sizes, although the imputation quality for these
variants was good (average r*=0.81). Finally, the variants detected
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here may be in LD with ancestry-specific causal variants that were
not investigated here that differ in frequency across ancestries.
However, we could not find evidence of rarer alleles in the cog-
nate populations from the 1000 Genomes Project (Supplementary
Table 5). The final three single-ancestry loci were identified in indi-
viduals of European ancestry (Supplementary Note).

Next, by rescaling the standard errors of allelic effect sizes to
artificially boost the sample size of the European meta-analysis to
match that of trans-ancestry meta-analysis, we determined that 21
of the novel trans-ancestry loci would not have been discovered
with an equivalent sample size that consisted exclusively of individ-
uals of European ancestry (Supplementary Note). Their discovery
was due to the higher EAF and/or larger effect size in populations
of non-European ancestry. In particular, two loci (near LINC00885
and MIR4278) contain single-ancestry lead variants associated with
East Asian and African American ancestry, respectively, suggest-
ing that these specific ancestries may be driving the trans-ancestry
discovery (Supplementary Tables 2,3). Combined with the three
single-ancestry non-European loci described above, our results
show that 24% (24 out of 99) of the novel loci were discovered
due to the contribution of participants of non-European ances-
try, strengthening the argument for expanding genetic studies in
diverse populations.

Allelic architecture of glycemic traits. Single-ancestry and
trans-ancestry results combined increased the number of estab-
lished loci for FG to 102 (182 signals, 53 novel loci), FI to 66 (95
signals, 49 novel loci), 2hGlu to 21 (28 signals, 11 novel loci) and
HbA1lc to 127 (218 signals, 62 novel loci) (Supplementary Table 2),
with considerable overlap across traits (Extended Data Fig. 3). We
also detected (P<0.05 or log,,[BF] >0) most (around 90%) of the
previously established glycemic signals, 70-88% of which attained
genome-wide significance (Supplementary Note, Supplementary
Table 6). Given that analyses for FG, FI and 2hGlu were performed
adjusted for BMI, we confirmed that collider bias did not influence
more than 98% of discovered signals® (Supplementary Note). As
expected, given the greater power due to increased sample sizes,
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Fig. 1| Summary of all 242 loci identified in this study. The 235 trans-ancestry loci are shown in orange (novel) or black (established) along with seven
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new association signals tended to have smaller effect sizes and/or
EAFs in individuals of European ancestry compared with estab-
lished signals (Extended Data Fig. 4).

Characterization of lead variants across ancestries. To better
understand the transferability of trans-ancestry lead variants across
ancestries, we investigated the pairwise EAF correlation and the
pairwise summarized heterogeneity of effect sizes between ances-
tries’ (Methods, Supplementary Note). Consistent with popula-
tion history and evolution, these results demonstrated considerable
EAF correlation (p>>0.70) between populations of European and
Hispanic, European and South Asian, and Hispanic and South Asian
ancestry, which was consistent across all four traits, and between
individuals of African American and Ugandan descent for HbAlc
(Extended Data Fig. 5). Despite high EAF correlations, some pair-
wise comparisons exhibited strong evidence for effect size hetero-
geneity between ancestries that was less consistent between traits
(Extended Data Fig. 5). However, sensitivity analyses demonstrated
that, across all comparisons, the evidence for heterogeneity is driven
by a small number of variants, with between 81.5% (for HbA1c) and
85.7% (for FG) of trans-ancestry lead variants showing no evidence
for trans-ancestry heterogeneity (P> 0.05) (Supplementary Note).

Trait variance explained by associated loci. The trait variance
explained by genome-wide significant loci was assessed using only
the single-ancestry variants or a combination of single-ancestry
and trans-ancestry variants (Supplementary Table 7) with f values
extracted from the relevant single-ancestry meta-analysis results
(Methods). The variance explained was assessed by linear regression
in a subset of the contributing cohorts (Methods, Supplementary
Tables 8-11). In general, the approach that explained the most vari-
ance was one in which trans-ancestry lead variants that had P<0.1
in the relevant single-ancestry meta-analysis were combined with
single-ancestry variants that were not in LD with the trans-ancestry
variants (LD r?<0.1) (Fig. 2, list C in Supplementary Tables 8-11).
With this approach, the mean variance in the trait distribution
explained was between 0.7% (2hGlu in European ancestry) and
6% (HbAlc in African American ancestry). The European-based
estimates explained more variance relative to previous estimates of
2.8% for FG and 1.7% for HbA1c*? (Supplementary Note).

Transferability of European-ancestry-derived polygenic scores.
To investigate the transferability of polygenic scores across ances-
tries we used the PRS-CSauto software® to first build polygenic
scores (PGSs) for each glycemic trait based on the data from indi-
viduals of European ancestry. However, the training set for 2hGlu
was too small; therefore, this trait was excluded. To build the PGSs,
for each trait we first removed five of the largest European cohorts
from the European ancestry meta-analysis. These five cohorts were
meta-analyzed and used as our European ancestry test dataset, for
each trait. The remaining European ancestry cohorts were also
meta-analyzed and used as the training dataset, from which we
derived a PGS for each trait (Methods). We used PRS-CSauto to
revise the effect size estimates for the variants in the score (obtained
from the training European datasets) based on the LD of the test
population. PRS-CSauto does not have LD reference panels for
South Asian or Hispanic ancestry and as such we were unable to test
the transferability of the PGS to those populations. The ‘gtx’ pack-
age™ (Methods) was used to obtain the R? for each test population
(Fig. 3, Supplementary Table 12). Consistent with other complex
traits™, the European-ancestry-derived PGS had greater predictive
power for test data of individuals of European ancestry than for data
from other ancestry groups.

Fine-mapping. We fine-mapped, 231 trans-ancestry and
six single-ancestry autosomal loci (Supplementary Table 2,
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Supplementary Note). Using FINEMAP with ancestry-specific
LD and an average LD matrix across ancestries, we conducted
fine-mapping both within (161loci with single-ancestry lead vari-
ants) and across ancestries (231loci) for each trait (Methods).
Because 59 of the 231 trans-ancestry loci were associated with more
than one trait, we conducted trans-ancestry fine-mapping for a total
of 305 locus-trait associations. Of these 305 locus-trait combina-
tions, FINEMAP estimated the presence of a single causal variant at
1861oci (61%), whereas multiple distinct causal variants were impli-
cated at 1261oci (39%), for a total of 464 causal variants (Fig. 4a).

Credible sets for causal variants. At each locus, we next constructed
credible sets (CSs) for each causal variant that account for at least
99% of the posterior probability of association (PPA). We identi-
fied 21 locus-trait associations (at 19loci) for which the 99% CS
included a single variant and we highlight four examples (Fig. 4b,
Methods, Supplementary Note, Supplementary Table 13).

At MTNRIB and SIX3 we identified, respectively, rs10830963
(PPA>0.999, for both HbAlc and FG) and 1rs12712928
(PPA=0.997, for FG) as the likely causal variants. Previous stud-
ies confirm for both loci that these variants affect transcriptional
activity**~* (Supplementary Note). At a locus near PFKM associated
with HbAlc, trans-ancestry fine-mapping identified rs12819124
(PPA>0.999) as the likely causal variant. This variant has previously
been associated with mean corpuscular hemoglobin®, suggesting
an effect on HbAlc through red blood cells (RBCs; Supplementary
Note). At HBB, we identified rs334 (PPA >0.999; Glu7Val) as the
likely causal variant associated with HbAlc. rs334 is a causal vari-
ant of sickle-cell anemia*, was previously associated with urinary
albumin-to-creatinine ratio in individuals of Caribbean Hispanic
ancestry'!, severe malaria in a study with a population of Tanzanian
ancestry”, hematocrit and mean corpuscular volume in populations
of Hispanic/Latino descent* and RBC distribution in individuals of
Ugandan ancestry*; all of these results point to a variant effect on
HbA Ic through non-glycemic pathways.

The remaining locus-trait associations with a single variant in
the 99% CS (Supplementary Table 13) point to variants that could
be prioritized for functional follow-up to elucidate the effect on gly-
cemic trait physiology.

At an additional 156 locus-trait associations, trans-ancestry
fine-mapping identified 99% CSs with 50 or fewer variants
(Fig. 4b, Supplementary Table 13). Consistent with the potential
for more than 1 causal variant in a locus, 74 locus-trait associa-
tions contained 88 variants with PPA >0.90 that were strong can-
didate causal variants (Supplementary Table 14). For example, 10
are coding variants including several missense variants, such as the
HBB Glu7Val variant mentioned above, GCKR Leu446Pro, RREBI
Aspl771Asn, G6PC2 Pro324Ser, GLPIR Ala316Thr and TMPRSS6
Val736Ala, each of which have been proposed or shown to affect
gene function'>****. We additionally identified AMPD3 Val311Leu
(PPA=0.989) and TMC6 Trp125Arg (PPA > 0.999) variants associ-
ated with HbAlc that were previously detected in an exome array
analysis but had not been fine-mapped with certainty due to the
absence of backbone GWAS data™. Our fine-mapping data now
suggest that these variants are likely causal and identify their cog-
nate genes as effector transcripts.

Finally, we evaluated the resolution obtained in the trans-ancestry
versus single-ancestry fine-mapping (Methods, Supplementary
Note). We compared the number of variants in 99% CS across 98
locus-trait associations that—as suggested by FINEMAP—had
a single causal variant in both trans-ancestry and single-ancestry
analyses. Fine-mapping within and across ancestries was conducted
using the same set of variants. At 8 out of 98 locus-trait associa-
tions, single-ancestry fine-mapping identified a single variant in the
CSs. In addition, at 72 of the 98 locus-trait associations, the num-
ber of variants in the 99% CSs was smaller in the trans-ancestry
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Fig. 2 | Trait variance explained by associated loci. a-c, Results from an analysis of trait variance explained by associated loci for FG (a), FI (b) and HbAlc
(c). The box plots show the maximum, first quartile, median, third quartile and minimum of trait variance explained when using a genetic score with
single-ancestry lead and index variants (European (EUR), African American (AA), East Asian (EAS), Hispanic (HISP) and Southeast Asian (SAS) ancestry)
or a combination of trans-ancestry (TA) lead variants for individual traits and single-ancestry lead and index variants (TA + EUR, TA+ AA, TA+EAS,

TA +HISP and TA + SAS). Variance explained in each ancestry is in different colors. Data points represent the variance explained in individual cohorts used
in this analysis. Adjusted R? was estimated in 1-11 cohorts with sample sizes ranging from 489 to 9,758 (Supplementary Tables 8-11).

fine-mapping (Fig. 4c), which likely reflects the larger sample
size and differences in LD structure, EAFs and effect sizes across
diverse populations. To quantify the estimated improvement in
fine-mapping resolution that is attributable to the multi-ancestry
GWAS, we then compared 99% CS sizes from the trans-ancestry
fine-mapping to single-ancestry-specific data emulating the same
total sample size by rescaling the standard errors (Methods). Of the
72 locus-trait associations with estimated improved fine-mapping

844

in trans-ancestry analysis, resolution at 38 (53%) was improved
because of the larger sample size in the trans-ancestry fine-mapping
analysis (Fig. 4c), and this estimated improved resolution would
likely have been obtained in a European-only fine-mapping effort
with equivalent sample size. However, at 34 (47%) loci, the inclu-
sion of samples from multiple diverse populations yielded the esti-
mated improved resolution. On average, ancestry differences led to
a reduction in the median number of variants in the 99% CSs from
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24 to 15 variants (37.5% median reduction; Fig. 4c), demonstrating
the value of conducting fine-mapping analyses across ancestries.

HbAlc signal classification. HbAlc-associated variants can
exert their effects on HbAlc levels through both glycemic and
non-glycemic pathways”' and their correct classification can affect
T2D diagnostic accuracy”*. Using previous association results for
other glycemic, RBC and iron traits, as well as a fuzzy clustering
approach, we classified variants into their most likely mode of action
(Methods, Supplementary Note). Of the 218 HbAlc-associated vari-
ants, 27 (12%) could not be characterized due to missing data and
23 (11%) could not be classified into a ‘known’ class (Supplementary
Note). The remaining signals were classified as principally: (1) gly-
cemic (n=>53; 24%); (2) affecting iron levels and/or iron metabo-
lism (n=12; 6%); or (3) RBC traits (n=103; 47%). A genetic risk
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score (GRS) composed of all HbA1c-associated signals was strongly
associated with T2D risk (odds ratio (OR)=2.4, 95% confidence
interval (CI)=2.3-2.5, P=2.7x10"**). However, when using
partitioned GRSs composed of these different classes of variants
(Methods), we found that the T2D association was mainly driven
by variants that influenced HbAlc through glycemic pathways
(OR=2.6,95% CI=2.5-2.8, P=2.3 x107*"), with weaker evidence
of an association (despite the larger number of variants in the GRS)
and a more modest risk (OR=1.4,95% CI=1.2-1.7, P=4.7Xx107%)
imparted by signals in the mature RBC cluster that were not glyce-
mic (that is, for which those specific variants had P> 0.05 for FI,
2hGlu and FG) (Extended Data Fig. 6, Supplementary Note). This is
in contrast with our previous finding in which we found no signifi-
cant association between a risk score of non-glycemic variants and
T2D’. Our current results could be partly driven by cases of T2D
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being diagnosed on the basis of HbAlc levels that may be influ-
enced by the non-glycemic signals, or by glycemic effects that are
not captured by FI, 2hGlu or FG measures.

Biological signatures of glycemic-trait-associated loci. To better
understand distinct and shared biological signatures underlying
variant—trait associations, we conducted genomic feature enrich-
ment, expression quantitative trait loci (eQTL) co-localization, and
tissue and gene-set enrichment analyses across all four traits.

Epigenomic landscape of trait-associated variants. We explored the
genomic context that underlies glycemic trait loci by computing
overlap enrichment for ‘static’ annotations such as coding regions,
conserved regions and super enhancers merged across multiple
cell types”~° using the GREGOR tool**. We observed that FG, FI
and HbAlc signals (Supplementary Table 7) were significantly

846

(P<8.4%107%, Bonferroni threshold for 59 annotations) enriched
in evolutionarily conserved regions (Fig. 5a, Extended Data Fig. 7,
Supplementary Table 15).

We then considered epigenomic landscapes defined in indi-
vidual cell and/or tissue types. Previously, stretch enhancers (StrE;
enhancer chromatin states that are >3kb in length) in pancreatic
islets were shown to be highly cell-specific and strongly enriched
with T2D risk signals’. Considering StrEs across 31 cell types®,
FG and 2hGlu signals showed the highest enrichment in islets
(FG, fold enrichment=4.70, P=2.7x107%*; 2hGlu, fold enrich-
ment=>5.51, P=3.6 X107 Fig. 5a, Supplementary Table 16), high-
lighting the importance of islets for these traits. FI signals were
enriched in skeletal muscle (fold enrichment=3.17, P=7.8x107°)
and adipose StrEs (fold enrichment=3.27, P=1.8X1077), consis-
tent with the idea that these tissues are targets of insulin action
(Fig. 5a). StrEs in individual cell types showed higher enrichment
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than super enhancers merged across cell types, highlighting the
importance of cell-specific analyses (Fig. 5a). HbAlc signals were
enriched in StrEs of multiple cell types and tissues, but have the
strongest enrichment in K562 leukemia-derived cells (fold enrich-
ment=3.24, P=1.2x107"; Fig. 5a). Among the ‘hard’ glycemic
and RBC (mature + reticulocyte) HbAlc signals, glycemic signals
were enriched in islet StrEs (fold enrichment=3.96, P=3.7 X 107¢)
whereas RBC signals were enriched in K562 StrEs (fold enrich-
ment=7.5, P=2.08 X 10~ Fig. 5b, Supplementary Table 17). These
analyses suggest that these glycemic-trait-associated variants influ-
ence the function of tissue-specific enhancers.

Independent analyses with f{GWAS*® and GARFIELD* yielded
consistent results (Extended Data Figs. 8 and 9, Supplementary
Tables 16 and 18). Notably, FI signals at a lenient threshold of
P <107° were enriched in liver StrEs using GARFIELD (OR=1.92,
P=1.7x10"") (Extended Data Fig. 9a). This suggests that liver regu-
latory annotations are relevant for FI GWAS signals, but that we lack
the power to detect significant enrichment using the genome-wide
significant loci and the current set of reference annotations.

We next explored the 27loci that drive the FI enrichment in adi-
pose and skeletal muscle, 11 of which overlapped with StrEs in both
tissues (Fig. 5¢). At the COL4A2 locus, variants within an intronic
region overlap with StrEs in adipose tissue, skeletal muscle and
a human skeletal muscle myoblast (HSMM) cell line that are not
shared across other cell or tissue types. Among these, rs9555695 (in
the 99% CS) also overlaps with accessible chromatin regions in adi-
pose (Fig. 5d). At a narrow signal with no proxy variants (LD 7*>0.7
in individuals of European ancestry), the lead trans-ancestry variant
1s62271373 (PPA =0.94), which is located in an intergenic region
around 25kb from the LINC01214 gene, overlaps with StrEs that
are specific to adipose and HSMM and an active enhancer chroma-
tin state in skeletal muscle (Fig. 5¢). Collectively, the tissue-specific
epigenomic signatures at GWAS signals provide an opportunity
to nominate tissues in which these variants are likely to be active.
This map may help future efforts to deconvolute GWAS signals into
tissue-specific disease pathology.

Co-localization of GWAS and eQTLs. Among the 99 novel gly-
cemic trait loci, we identified co-localized eQTLs at 34 loci in
blood, pancreatic islets, subcutaneous or visceral adipose, skel-
etal muscle or liver, providing suggestive evidence of causal genes
(Supplementary Table 19). The co-localized eQTLs include several
genes that have previously been reported at glycemic trait loci®*-*%
ADCY5, CAMKID, IRS1, JAZF1 and KLFI14. For some additional
loci, the co-localized genes have previous evidence for a role in gly-
cemic regulation. For example, the lead trans-ancestry variant and
likely causal variant—rs1799815 (PPA =0.993)—that is associated
with FI is the strongest variant associated with expression of INSR,
which encodes the insulin receptor, in subcutaneous adipose from
METSIM (P=2x%10"°) and GTEx (P=5X10"°) datasets. The A
allele at rs1799815 is associated with higher FI and lower expression
of INSR, which is consistent with the relationship between insu-
lin resistance and reduced INSR function®. In a second example,
rs841572, which is the trans-ancestry lead variant associated with
FG, has the highest PPA (PPA =0.535) among the 20 variants in the
99% CS and is in strong LD (r*=0.87) with the lead eQTL variant
(rs841576, also in the 99% CS) associated with SLC2A1 expression
in blood (eQTLGen, P=1x107%). SLC2A1 (which is also known as
GLUTI) encodes the major glucose transporter in brain, placenta
and erythrocytes, and is responsible for glucose entry into the
brain®. rs841572-A is associated with lower FG and lower SLC2A1
expression. Although rare missense variants in SLC2AI are an
established cause of seizures and epilepsy®, our data suggest that
SLC2A1 variants also affect plasma glucose levels within a popula-
tion. These co-localized signals provide possible regulatory mecha-
nisms for variant effects on genes that influence glycemic traits.
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The co-localized eQTLs also provide insights into the mecha-
nisms of action of glycemic trait loci. For example, rs9884482 (in
the 99% CS) is associated with FI and TET2 expression in subcuta-
neous adipose (P=2x107%); rs9884482 is in high LD (r*=0.96 in
individuals of European ancestry) with the lead TET2 eQTL vari-
ant (rs974801). TET2 encodes a DNA demethylase that can affect
transcriptional repression®. Tet2 expression in adipose is reduced
after diet-induced insulin resistance in mice®, and knockdown of
Tet2 blocked adipogenesis®®. Furthermore, in human adipose tis-
sue, rs9884482-C was associated with lower TET2 expression and
higher FI. In a second example, rs617948 is associated with HbAlc
(in the 99% CS) and is the lead variant associated with C2CD2L
expression in blood (eQTLGen, P=3X10"%). C2CD2L (which is
also known as TMEM24) encodes a protein that regulates pulsatile
insulin secretion and facilitates release of insulin pool reserves® .
rs617948-G was associated with higher HbA1c and lower C2CD2L,
providing evidence for a role for this insulin secretion protein in
glucose homeostasis. Our HbAlc ‘soft’ clustering assigned this
signal to both the ‘unknown’ (0.51 probability) and ‘reticulocyte’
(0.42 probability) clusters. rs617948 is strongly associated with
HbAlc (P<6.8%107%), but not with FG, FI or 2hGlu (P> 0.05;
Supplementary Table 20, Supplementary Note). This suggests that
there is an effect of this variant on reticulocyte biology and on insu-
lin secretion, potentially influencing HbA1lc levels through different
tissues and providing a plausible explanation for the classification
as ‘unknown’

Tissue expression. Consistent with effector transcript expression
analysis using GTEx data™, we found considerable differences in
tissue expression across the glycemic trait signals. FG signals were
enriched for genes expressed in the pancreas (false-discovery rate
(FDR) <0.05), whereas there was an insufficient number of signifi-
cant associations in 2hGlu to identify enrichment for any tissue or
cell type at a threshold of FDR <0.2. FI signals were enriched in
connective tissue and cells (which includes adipose tissue), endo-
crine glands, blood cells and muscles (FDR <0.2) and HbAlc sig-
nals were significantly enriched in genes expressed in the pancreas,
hemic and immune system (FDR<0.05) (Fig. 6, Supplementary
Table 21). Consistent with previous analysis®’, FI enrichment in
connective tissue was driven by adipose tissue (subcutaneous and
visceral), whereas the newly described enrichment in endocrine
glands was driven by the adrenal glands and cortex (Supplementary
Table 21). In addition to enrichment in genes expressed in
glycemic-related tissues, HbAlc signals were enriched in genes
expressed in the blood, consistent with the role of RBCs in this trait
and our previous results™.

The association between FI signals and genes expressed in adre-
nal glands is notable, suggesting a possible direct role for these
genes in insulin resistance. These genes could influence cortisol lev-
els, which may contribute to insulin resistance and FI levels through
impaired insulin receptor signaling in peripheral tissues, as well as
influencing the distribution of body fat, stimulating lipolysis and
affecting other indirect mechanisms’""%.

Gene-set analyses. Next, we performed gene-set analysis using
DEPICT (Data-driven Expression-Prioritized Integration for
Complex Traits) (Methods). In agreement with previous results™,
we found distinct gene sets that were enriched (FDR < 0.05) in each
glycemic trait except for 2hGlu, which had insufficient associations
to have power in this analysis. FG-associated variants highlighted
gene sets that are involved in metabolism and gene sets that are
involved in general cellular functions, such as ‘cytoplasmic vesicle
membrane’ and ‘circadian clock’ (Fig. 7a). By contrast, in addition
to metabolism-related gene sets, FI-associated variants highlighted
pathways that are related to growth, cancer and reproduction
(Fig. 7b). This is consistent with the role of insulin as a mitogenic
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hormone, and with epidemiological links between insulin and many gene sets (Fig. 7c), including those linked to metabolism

certain types of cancer” and reproductive disorders such as poly-

cystic ovary syndr

850

ome’. HbAlc-associated variants highlighted

and hematopoiesis, again recapitulating our postulated effects of
variants on glucose and RBC biology. Additional pathways from
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HbAlc-associated variants also highlighted previous ‘CREBP
protein-protein interactions’ and lipid biology related to T2D”
and HbA1c’, respectively, and potential new biological pathways
through which variants may influence HbAlc.

Discussion

Here we describe a large glycemic-trait meta-analysis of GWAS
in which 30% of the population was composed of participants
of East Asian, Hispanic, African American, South Asian and
sub-Saharan African ancestry. This effort identified 242loci (235
trans-ancestry and seven single-ancestry), which jointly explained
between 0.7% (2hGlu in individuals of European ancestry) and 6%
(HbAlc in individuals of African American ancestry) of the vari-
ance in glycemic traits in any given ancestry. Although 114 out of
242 loci are associated with T2D (P<107% 83 loci with P<5x 1078
Supplementary Table 4), the absence of strong evidence of associa-
tion for the remaining loci (P>107*) suggests that for alleles with
a frequency above 5% we can exclude T2D-associated OR>1.07
with 80% power (@=5x%107% and OR>1.05 for a=10"*) given
a current study of 228,499 cases of T2D and 1,178,783 con-
trol individuals”’. We identified 486 signals that were associated
with glycemic traits, of which eight have minor allele frequency
(MAF) <1% and 45 have 1% < MAF < 5% in all ancestries, high-
lighting that 89% of signals identified are common in at least one
ancestry studied.

A key aim of our study was to evaluate the added advan-
tage of including population diversity in genetic discovery and
fine-mapping efforts. In addition to the larger sample size included
in the trans-ancestry meta-analysis, we were able to estimate the
contribution of data from individuals of non-European ancestry in
locus discovery and fine-mapping resolution. We found that 24 of
the 99 newly discovered loci owe their discovery to the inclusion of
data from participants of East Asian, Hispanic, African American,
South Asian and sub-Saharan African ancestry, due to differences in
EAF and effect sizes across ancestries.

Comparison of 295 trans-ancestry lead variants (315 locus-
trait associations) across ancestries demonstrated that between
81.5% (HbAlc) and 85.7% (FG) of the trans-ancestry lead vari-
ants showed no evidence of trans-ancestry heterogeneity in allelic
effects (P> 0.05).

Given sample size and power limitations, genome-wide signifi-
cant trait-associated variants in a single-ancestry analysis explain
only a modest proportion of trait variance in that ancestry (Fig. 2).
We demonstrate that trans-ancestry lead variants explain more trait
variance than the ancestry-specific variants (Fig. 2). This shows that
even though some trans-ancestry lead variants are not genome-wide
significant in all ancestries, they contribute to the genetic architec-
ture of the trait in most ancestries.

We evaluated the transferability of glycemic-trait PGSs derived
from data from individuals of European ancestry to other ances-
tries. In agreement with other traits*>””’, we confirm that PGS
derived from data from participants of European ancestry perform
much worse when the test dataset is from a different ancestry. Each
trait-specific PGS improves trait variance explained by between
3.5-fold (HbAlc) and 6-fold (FG) in the European dataset (Fig. 3,
Supplementary Table 12) compared with a score built from only
trans-ancestry lead variants and European index variants (Fig. 2,
Supplementary Tables 9-12).

Despite development of approaches to derive polygenic risk
scores’”’, we note the difficulty in using summary level data to build
a PGS in one ancestry and then apply it to test datasets of a different
ancestry. Although PRS-CSauto™ is able to use summary-level data,
revision of the effect size estimates to account for LD required refer-
ence panels that matched the ancestry of the test dataset. However,
the current software lacks appropriate reference panels for many
ancestries, precluding its broad application. Future developments
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of trans-ancestry PGSs are required for improved cross-ancestry
performance.

We show that fine-mapping resolution is improved in
trans-ancestry, compared with single-ancestry fine-mapping
efforts. In around 50% of our loci, we showed that the improvement
was due to differences in EAF, effect size or LD structure between
ancestries, and not only due to the overall increased sample size
that was available for trans-ancestry fine-mapping. By perform-
ing trans-ancestry fine-mapping, and co-localizing GWAS signals
with eQTL signals and coding variants, we identified new candi-
date causal genes. Taken together, these results motivate continued
expansion of genetic and genomic efforts in diverse populations to
improve our understanding of these traits in groups that are dispro-
portionally affected by T2D.

Given data on four different glycemic traits and their use in the
diagnosis and monitoring of T2D and metabolic health, we also
sought to characterize biological features underlying these traits.
We show that despite considerable sharing of loci across the four
traits, each trait is also characterized by unique features based on
StrE, gene expression and gene-set signatures. Combining genetic
data from these traits with T2D data will further elucidate path-
ways that drive normal physiology and pathophysiology, and help
to further develop useful predictive scores for disease classification
and management®”.
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Methods

Study design and participants. This study included trait data from four glycemic
traits: FG, FI, 2hGlu and glycated HbA1c. The total number of contributing
cohorts ranged from 41 (2hGlu) to 131 (FG), and the maximum sample size for
each trait ranged from 85,916 (2hGlu) to 281,416 (FG) (Supplementary Table 1).
Self-identified ancestry was initially defined at the cohort level, but within each
cohort ancestry was confirmed with genetic data with ancestry outliers removed
(Supplementary Table 1). Overall, participants of European ancestry dominated the
sample size for all traits, representing between 68.0% (HbA1c) and 73.8% (2hGlu)
of the overall sample size. Individuals of African American ancestry represented
between 1.7% (2hGlu) and 5.9% (FG) of participants; individuals of Hispanic
ancestry represented between 6.8% (FG) and 14.6% (2hGlu) of participants;
individuals of East Asian ancestry represented between 9.9% (2hGlu) and 15.4%
(HbAIc) of participants; and individuals of South Asian ancestry represented
between 0% (no contribution to 2hGlu) and 4.4% (HbA1c) of participants. Data
from participants of Ugandan ancestry were only available for the HbAlc analysis
and represented 2% of participants.

Phenotypes. Analyses included data for FG and 2hGlu measured in mmoll~’, FI
measured in pmoll~ and HbA1c as a percentage (where possible, studies reported
HbA1Ic as a National Glycohemoglobin Standardization Program percentage).
Similar to previous MAGIC efforts’, individuals were excluded if they had type 1
diabetes or T2D (defined according to a diagnosis by a physician); reported use of
diabetes-relevant medication(s); or had a FG >7 mmoll~!, 2hGlu > 11.1 mmoll~! or
HbA1lc>6.5%, as described in Supplementary Table 1. 2hGlu measurements were
obtained 120 min after a glucose challenge using an oral glucose-tolerance test.
Measurements of FG and FI obtained from whole blood were corrected to plasma
levels using the correction factor 1.13 as previously described™.

Genotyping, quality control and imputation. Each participating cohort
performed study-level quality control (QC), imputation and association analyses
following a shared analysis plan. Cohorts were genotyped using commercially
available genome-wide arrays or the Illumina CardioMetabochip (Metabochip)
array®' (Supplementary Table 1). Before imputation, each cohort performed
stringent sample and variant QC to ensure only high-quality variants were kept
in the genotype scaffold for imputation. Sample QC checks included removing
samples with a low call rate less than 95%, extreme heterozygosity, sex mismatch
with X chromosome variants, duplicates, first- or second-degree relatives (unless
by design) or ancestry outliers. After sample QC, cohorts applied variant QC
thresholds for call rate (less than 95%), Hardy-Weinberg equilibrium P<1x10~¢
and MAE Full details of QC thresholds and exclusions for the participating cohorts
are available in Supplementary Table 1.

Imputation was performed up to the 1000 Genomes Project phase 1 (v.3)
cosmopolitan reference panel®, with a small number of cohorts imputing up to
the 1000 Genomes Project phase 3 panel'® or population-specific reference panels
(Supplementary Table 1).

Study-level association analyses. Each of the glycemic traits (FG, natural
log-transformed FI and 2hGlu) were regressed on BMI (except for HbAlc),
study-specific covariates and principal components (unless implementing a

linear mixed model). Analyses for FG, FI and 2hGlu were adjusted for BMI as

we had previously shown that this did not materially affected the results for FG
and 2hGlu but improved our ability to detect FI-associated loci'®. For simplicity,
we refer to the traits as FG, FI and 2hGlu. For a discussion on collider bias, see
Supplementary Note section 2c. Both the raw and rank-based inverse-normal
transformed residuals from the regression were tested for association with genetic
variants using SNPTEST* or Mach2Qt]**'. Poorly imputed variants, defined as
imputation 7> < 0.4 or INFO score < 0.4, were excluded from downstream analyses
(Supplementary Table 1). After study-level QC, approximately 12,229,036 variants
(GWAS cohorts) and 1,999,204 variants (Metabochip cohorts) were available for
analysis (Supplementary Table 1).

Centralized QC. Each contributing cohort shared their summary statistic results
with the central analysis group, who performed additional QC using EasyQC®.
Allele-frequency estimates were compared to estimates from 1000 Genomces Project
phase 1 reference panel®, and variants were excluded from downstream analyses if
there was a MAF difference greater than 0.2 for populations of African American,
European, Hispanic and East Asian ancestry compared with populations of African,
European, Mexican and Asian ancestry from 1000 Genomes Project phase 1,
respectively, or a MAF difference of more than 0.4 for individuals of South Asian
ancestry compared with the population of European ancestry. At this stage, additional
variants were excluded from each cohort file if they met one of the following criteria:
were tri-allelic; had a MAC < 3; demonstrated a standard error of the effect size > 10;
or were missing an effect estimate, standard error or imputation quality. All data that
passed QC (approximately 12,186,053 variants from GWAS cohorts and 1,998,657
variants from Metabochip cohorts) were available for downstream meta-analyses.

Single-ancestry meta-analyses. Single-ancestry meta-analyses were performed
within each ancestry group using the fixed-effects inverse-variance meta-analysis
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implemented in METAL*. We applied a double-genomic control correction'>*

to both the study-specific GWAS results and the single-ancestry meta-analysis
results. Study-specific Metabochip results were corrected by genomic control
using 4,973 SNPs included on the Metabochip array for replication of associations
with QT interval, a phenotype that is not correlated with the glycemic traits

being analyzed".

Identification of single-ancestry index variants. To identify distinct association
index variants across each chromosome within each ancestry (Table 1), we
performed approximate conditional analyses implemented in GCTA?' using the
--cojo-slct option (autosomes) and distance-based clumping (X chromosome).
LD correlations for GCTA were estimated from a representative cohort from

each ancestry: Women’s Genome Health Study (European); China Health and
Nutrition Survey (East Asian); Singapore Indian Eye Study (South Asian); BioMe
(African American); Study of Latinos (Hispanic) and Uganda (for itself). The
results from the GCTA were comparable when using alternative cohorts as the LD
reference. For any index variant with a QC flag that caused reason for concern,
we performed manual inspection of forest plots to decide whether the signal was
likely to be real (Supplementary Note). Among 335 single-ancestry index variants
across all traits, this manual inspection was done for 40 signals of which 32 passed
and 8 failed after inspection. Thus, a total of 327 single-ancestry index variants
passed and 8 failed.

Trans-ancestry meta-analyses. To leverage power across all ancestries, we

also conducted trait-specific trans-ancestry meta-analysis by combining the
single-ancestry meta-analysis results using MANTRAY (Supplementary Note). We
defined log, [BF] > 6 as genome-wide significant, approximately comparable to
P<5x107%

Manual curation of trans-ancestry lead variants. To ensure that trans-
ancestry lead variants were robust, we performed manual inspection of forest
plots by at least two authors, for any variants with flags that indicated possible
QC issues (Supplementary Note). Of 463 trans-ancestry lead variants across all
traits, 184 passed without inspection, 131 passed after inspection and 148 failed
after inspection.

Comparison of trans-ancestry lead variants across ancestries. For each pair of
ancestries, we calculated Pearson’s correlations in EAFs for each trans-ancestry lead
variant. The pairwise summarized heterogeneity of effect sizes between ancestries
was then tested using a joint F-test of heterogeneity’'. The test statistic is the sum of
Cochran Q-statistics for heterogeneity across all trans-ancestry signals. Under the
null hypothesis, the statistics follows a y* distribution with # degrees of freedom,
where 7 is the number of the trans-ancestry lead variants.

LD-pruned variant lists. Several downstream analyses (for example, genomic
feature enrichment, genetic scores and estimation of variance explained by
associated variants) require independent LD-pruned variants (r* <0.1) to avoid
double-counting variants that might otherwise be in LD with each other and that
do not provide additional ‘independent’ evidence. Therefore, for these analyses

we generated different lists of either trans-ancestry or single-ancestry LD-pruned
(r<0.1) variants, retaining—in each case—the variant with the strongest evidence
of association (Supplementary Table 7). Subsequently, we combined trans-ancestry
and single-ancestry variant lists and conducted further LD pruning. For some
analyses, we took the trans-ancestry-pruned variant list and added single-ancestry
signals if the LD 7> < 0.1, whereas for others we started with the single-ancestry
pruned lists and supplemented with trans-ancestry lead variants if the LD r*<0.1.
One exception was the list used for eQTL co-localizations, which included all
single-ancestry European signals (without LD pruning) and supplemented

with any additional trans-ancestry lead variants (starting from the variants

with the most significant P values) with LD r* <0.1 for data from individuals of
European ancestry with any of the variants already in list, and that reached at least
P<1x107° in the meta-analysis of individuals of European ancestry.

Trait variance explained by associated loci. To determine how much of the
phenotypic variance of each trait could be explained by the corresponding
trait-associated loci, variants were combined in a series of weighted genetic scores.
The analysis was performed in a subset of the cohorts included in the discovery
GWAS (with representation from each ancestry) and in a smaller number of
independent cohorts (European ancestry only). Up to three different genetic
scores were derived per trait (and for each ancestry) to evaluate the potential for
the trans-ancestry meta-GWAS-identified loci to provide additional information
above and beyond that contributed by the ancestry-specific meta-analysis

results. These genetic scores comprised: list A, single-ancestry signals; list B,
single-ancestry signals plus trans-ancestry signals; and list C, trans-ancestry signals
plus single-ancestry signals (Supplementary Table 7). In the case of the cohorts

of individuals of European ancestry that contributed to the GWAS, we used a
previously published method™ to adjust the effect sizes (f values) from the GWAS
for the contribution of that cohort, providing sets of cohort-specific effect sizes
that were then used to generate the genetic scores. The association between each
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genetic score and its corresponding trait was tested by linear regression and the
adjusted R* from the model was extracted as an estimate of the variance explained.

Transferability of PGSs across ancestries. We used the PRS-CSauto® software to
first build PGSs derived from data from individuals of European ancestry for

each glycemic trait (FG, FIL, 2hGlu and HbA1c) on the basis of the summary
statistics. However, PRS-CSauto does not perform well when the training dataset
is relatively small and the genetic architecture is sparse’. As a consequence, 2hGlu
was excluded from this analysis. For each trait, to obtain training and test datasets
for populations of European ancestry, we first removed all cohorts only genotyped
on the Metabochip that were not included in this analysis. From the remaining
cohorts we then removed five of the largest cohorts of European ancestry that
contributed to the respective meta-analysis of data of populations of European
ancestry. For each trait, these five cohorts were meta-analyzed and used as the test
dataset of individuals of European ancestry. Subsequently, the remaining cohorts
comprising individuals of European ancestry were also meta-analyzed and used
as the training dataset of individuals of European ancestry. For each of the other
ancestries, cohorts only genotyped on the Metabochip were also removed, and the
remaining cohorts were meta-analyzed, and used as the test datasets of populations
of non-European ancestry. Variants that had MAF <0.05 or that were missing

in over half of the individuals in the training dataset were removed***. The PGS
for each trait was built using PRS-CSauto with default settings™ with the effect
size estimates based on the training dataset of individuals of European ancestry
being revised based on an LD reference panel that matched the test dataset. The
proportion of the trait variance explained by the PGS derived from data from
individuals of European ancestry (R?) was estimated using the R package ‘gtx™* on
the basis of the revised effect sizes and summary statistics from the test dataset for
each ancestry.

Fine-mapping. Of the 242 loci identified in this study, 237 were autosomal loci that
we took forward for fine-mapping (Supplementary Table 2). We used the Bayesian
fine-mapping method FINEMAP* (v.1.1) to refine association signals and attempt
to identify likely causal variants at each locus. FINEMAP estimates the maximum
number of causal variants at each locus, calculates the posterior probability of

each variant being causal and proposes the most likely configuration of causal
variants. The posterior probabilities of the configurations in each locus were used
to construct 99% CSs.

We performed both single-ancestry and trans-ancestry fine-mapping. In
both analyses, only data from cohorts genotyped on GWAS arrays were used, and
analyses were limited to trans-ancestry lead variants and other single-ancestry
lead variants that were present in at least 90% of the samples for each trait. For
the single-ancestry fine-mapping, FINEMAP estimates the number of causal
variants in a region up to a maximum number, which we set to be two plus the
number of distinct signals identified from the GCTA signal selection. FINEMAP
uses single-ancestry and trait-specific z-scores from the fixed-effect meta-analysis
in METAL” and an ancestry-specific LD reference, which we created from a
subset of cohorts (combined sample size of more than 30% of the sample size
for that ancestry), weighting each cohort by sample size. In the trans-ancestry
fine-mapping analysis, FINEMAP was similarly used to estimate the number
of causal variants starting with two, and trait-specific z-scores and LD maps
were generated from the sample-size-weighted average of those used in the
single-ancestry fine-mapping. The maximum number of causal variants was
iteratively increased by one until it was larger than the number of causal variants
supported by data (Bayes factor), which was the estimated maximum number of
causal variants used in the final run of the fine-mapping analysis.

To compare fine-mapping results obtained from the single-ancestry and
trans-ancestry efforts, analyses were limited to fine-mapping regions with evidence
for a single likely causal variant in both, enabling a straightforward comparison of
CSs (Supplementary Note). To ensure any difference in the fine-mapping results
was not driven by different sets of variants being present in the different analyses,
we repeated the single-ancestry fine-mapping limited to the same set of variants
used in the trans-ancestry fine-mapping. The fine-mapping resolution was assessed
on the basis of comparisons of the 99% CSs in terms of the number of variants
included in the set and length of the region. To assess whether the improvement
in the trans-ancestry fine-mapping was due to differences in LD, increased sample
size or both, we repeated the trans-ancestry fine-mapping mimicking the sample
size present in the single-ancestry fine-mapping by dividing the standard errors by
the square root of the sample size ratio and compared the results with those from
the single-ancestry fine-mapping.

Functional annotation of trait-associated variants. HbAIc signal classification.
There were 218 HbAlc-associated signals from either the single-ancestry (that is all
GCTA signals from any ancestry) or trans-ancestry meta-analyses. To classify these
signals in terms of their likely mode of action (that is, glycemic, erythrocytic or
other’), we examined association summary statistics for the lead variants at the 218
signals in other large datasets of individuals of European ancestry for 19 additional
traits: three glycemic traits from this study (FG, 2hGlu and FI); seven mature RBC
traits”’! (RBC count, mean corpuscular volume, hematocrit, mean corpuscular
hemoglobin, mean corpuscular hemoglobin concentration, hemoglobin

concentration and RBC distribution width); five reticulocyte traits (reticulocyte
count, reticulocyte fraction of RBCs, immature fraction of reticulocytes, high
light-scatter reticulocyte count and high light-scatter percentage of RBCs)™",
and four iron traits (serum iron, transferrin, transferrin saturation and ferritin)*.
Of the 218 HbA ¢ signals, data were available for the lead (n=183) or proxy
(European LD 2> 0.8, n=8) variants for 191 signals.

The additional traits were clustered using hierarchical clustering to ensure
biologically related traits would cluster together (Supplementary Note). We then
used a non-negative matrix factorization” process to cluster the HbAlc signals.
Each cluster was labeled as glycemic, reticulocyte, mature RBC or iron-related
based on the strength of association of the signals in the cluster to the glycemic,
reticulocyte, mature RBC and iron traits (Supplementary Note). To verify that our
cluster naming was correct, we used HbA 1c association results conditioned on
either FG or iron traits or T2D association results (Supplementary Note).

HbAIc GRSs and T2D risk. We constructed GRSs for each cluster of
HbA1c-associated signals (based on hard clustering) and tested the association of
each cluster with T2D risk using samples from the UK Biobank. Pairs of HbAlc
signals in LD (European r*>0.10) were LD-pruned by removing the signal with
the less-significant P value of association with HbAlc. The GRS for each cluster
was calculated on the basis of the logarithm of the ORs from the latest T2D

study summary statistics’* and UK Biobank genotypes imputed in the Haplotype
Reference Consortium'. From 487,409 UK Biobank samples (age between 46 and
82 years; 55% female), we excluded participants for the following reasons: 373
with mismatched sex; 9 not used in the kinship calculation; 78,365 individuals

of non-European ancestry; and 138,504 with missing T2D status, age or sex
information. We further removed 26,896 related participants (kinship > 0.088,
preferentially removing individuals with the largest number of relatives and
control individuals for whom a case of T2D was related to that control individual).
Individuals with T2D were defined as: (1) a history of diabetes without metformin
or insulin treatment; (2) self-reported diagnosis of T2D; or (3) diagnosis of T2D
in a national registry (n=17,022; age between 47 and 79 years; 36% female).
Control individuals were participants without a history of T2D (n=226,240; age
between 46 and 82 years; 56% female). We tested for associations between each
GRS and T2D using logistic regression including covariates for age, sex and the
first five principal components. The significance of the associations was evaluated
by a bootstrap approach to incorporate the variance of each HbAlc-associated
signal in the T2D summary data. To do this, we generated the GRS of each cluster
200times by resampling the logarithm of the OR of each signal with T2D. For each
non-glycemic class that had a GRS that was significantly associated with T2D,

we performed sensitivity analyses to evaluate whether the association was driven
by variants that also belonged to a glycemic cluster when using a soft clustering
approach (the signals were classified as also glycemic in the soft clustering or had
an association P <0.05 with any of the three glycemic traits).

Chromatin states. To identify genetic variants within association signals

that overlapped predicted chromatin states, we used a previously published,
13-chromatin-state model that included 31 diverse tissues, including pancreatic
islets, skeletal muscle, adipose and liver™. In brief, this model was generated from
cell and tissue chromatin immunoprecipitation-sequencing data for H3K27ac,
H3K27me3, H3K36me3, H3K4mel and H3K4me3, and input control from a
diverse set of publicly available data®>**>* using the ChromHMM program”’. As
reported previously™, StrEs were defined as contiguous enhancer chromatin state
(active enhancer 1 and 2, genic enhancer and weak enhancer) segments that were
longer than 3kb (ref. 7).

Enrichment of genetic variants in genomic features. We used GREGOR (v.1.2.1) to
calculate the enrichment of GWAS variants that overlapped static annotations and
StrEs™. To calculate the enrichment of glycemic-trait-associated variants in these
annotations, we used the filtered list of trait-associated variants as described above
(Supplementary Table 7) as input. To calculate the enrichment of sub-classified
HbA Ic variants, we included the list of loci characterized as glycemic, another

list of loci characterized as reticulocyte or mature RBC—which collectively
represented the RBC fraction—along with lists of iron-related or unclassified

loci (Supplementary Table 17). We used the following parameters in GREGOR
enrichment analyses: European 7 threshold (for inclusion of variants in LD

with the lead variant) =0.8, LD window size =1Mb, and minimum neighbour
number = 500.

We used fGWAS (v.0.3.6) to calculate the enrichment of
glycemic-trait-associated variants in static annotations and StrEs using
summary-level GWAS results. We used the default f{GWAS parameters for
enrichment analyses for individual annotations for each trait. For each annotation,
the model provided the natural logarithm of the maximum likelihood estimate
of the enrichment parameter. Annotations were considered to be significantly
enriched if the log,[parameter estimate] value and respective 95% confidence
intervals were above zero or significantly depleted if the log,[parameter estimate]
value and respective 95% confidence intervals were below zero.

We tested the enrichment of trait-associated variants in static annotations and
StrEs with GARFIELD (v.2)”. We formatted annotation overlap files as required
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by the tool; prepared input data at two GWAS thresholds—a threshold of 1 x10~°
and a more stringent threshold of 1 10~*—by pruning and clumping with default
parameters (garfield-prep-chr script). We calculated enrichment in each individual
annotation using garfield-test.R with --c option set to 0. We also calculated the
effective number of annotations using the garfield-Meff-Padj.R script. We used

the effective number of annotations for each trait to obtain Bonferroni-corrected
significance thresholds for enrichment of each trait.

eQTL analyses. To aid in the identification of candidate casual genes associated with
the European-only and trans-ancestry association signals, we examined whether
any of the lead variants associated with glycemic traits (Supplementary Table 7)
were also associated with the expression level (FDR < 5%) of nearby transcripts
located within 1 Mb using existing eQTL datasets of blood, subcutaneous adipose,
visceral adipose, skeletal muscle and pancreatic islet samples®¢"**-*!. The LD was
estimated from the collected cohort pairwise LD information, where available,

and otherwise from the samples of individuals of European ancestry from 1000
Genomes Project phase 3. GWAS and eQTL signals likely co-localize when the
GWAS variant and the variant most strongly associated with the expression level
of the corresponding transcript (eSNP) exhibit high pairwise LD (7> 0.8; 1000
Genomes Project phase 3, European ancestry). For these signals, we conducted
reciprocal conditional analyses to test associations between the GWAS variant and
transcript level when the eSNP was also included in the model, and vice versa. We
report GWAS and eQTL signals as co-localized if the association for the eSNP was
not significant (FDR > 5%) when conditioned on the GWAS variant; we also report
signals from the eQTLGen whole-blood meta-analysis data that meet only the LD
threshold because conditional analysis was not possible.

Tissue and gene-set analysis. We performed enrichment analysis using DEPICT
v.3, which was specifically developed for the imputed meta-analysis data of the
1000 Genomes Project'” to identify cell types and tissues in which genes of
trait-associated variants were strongly expressed, and to detect enrichment of
gene sets or pathways. DEPICT data included human gene-expression data for
19,987 genes in 10,968 reconstituted gene sets, and 209 tissues and/or cell types.
Because gene-expression data in DEPICT is based on samples of individuals of
European ancestry and LD, we selected trait-associated variants with P<10°

in the meta-analysis of data of individuals of European ancestry and tested for
enrichment of signals in each reconstituted gene set, and each tissue or cell type.
Enrichment results with FDR < 0.05 were considered to be significant. We ran
DEPICT on the basis of the association results for all traits among: (1) cohorts
with genome-wide data; or (2) all cohorts (genome-wide and Metabochip
cohorts). Because results were broadly consistent between the two approaches,
we present results from the analysis that contained all cohorts as it had greater
statistical power.

Statistics and reproducibility. Sample size. No statistical method was used to
predetermine sample size. We aimed to bring together the largest possible sample
size with GWAS data from individuals of diverse ancestries (European, Hispanic,
African American, East Asian, South Asian and sub-Saharan African) without
diabetes and with data for one or more of the following traits: FG, FI, 2hGlu and
HbA1lc. The sample sizes were 281,416 (FG), 213,650 (FI), 215,977 (HbAlc) and
85,916 (2hGlu) (Supplementary Table 1). Our sample size was sufficiently powered
to detect common variant associations for each of the glycemic traits and was able
to detect associations at 242 loci.

Randomization and blinding. This is a study of continuous traits and there were
therefore no experiments to randomize and no ‘outcome’ to which investigators
needed to be blinded to.

Data exclusions. Before conducting this study, we identified reasons for which data
should be excluded from the analysis at either the cohort or summary level; these
exclusions are as follows. Sample QC checks included removing samples with low
call rate less than 95%, extreme heterozygosity, sex mismatch with X chromosome
variants, duplicates, first- or second-degree relatives (unless by design) or ancestry
outliers. Following sample QC, cohorts applied variant QC thresholds for call

rate (less than 95%), Hardy-Weinberg equilibrium P<1x 10 and MAEF. Full
details of QC thresholds and exclusions by participating cohorts are available

in Supplementary Table 1. Each contributing cohort shared their summary
statistic results with the central analysis group, who performed additional QC
using EasyQC. Allele-frequency estimates were compared with estimates from

the 1000 Genomes Project phase 1 reference panel, and variants were excluded
from downstream analyses if there was a MAF difference of more than 0.2 for
populations of African American, European, Hispanic and East Asian ancestry
compared with populations of African, European, Mexican and Asian ancestry
from 1000 Genomes Project phase 1, respectively, or a MAF difference of more
than 0.4 for individuals of South Asian ancestry compared with populations of
European ancestry. At this stage, additional variants were excluded from each
cohort file if they met one of the following criteria: were tri-allelic; had a MAC < 3;
demonstrated a standard error of the effect size > 10; imputation r* < 0.4 or INFO
score < 0.4; or were missing an effect estimate, standard error or imputation quality.
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Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Ancestry-specific and overall meta-analysis summary level results are available
through the MAGIC website (https://www.magicinvestigators.org/). Summary
statistics are also available through the GWAS catalog (https://www.ebi.ac.uk/
gwas/) with the following accession codes: GCST90002225, GCST90002226,
GCST90002227, GCST90002228, GCST90002229, GCST90002230,
GCST90002231, GCST90002232, GCST90002233, GCST90002234,
GCST90002235, GCST90002236, GCST90002237, GCST90002238,
GCST90002239, GCST90002240, GCST90002241, GCST90002242,
GCST90002243, GCST90002244, GCST90002245, GCST90002246,
GCST90002247 and GCST90002248.

Code availability
Source code implementing the methods described in the paper are publicly
available at https://doi.org/10.5281/zenod0.4607311.
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Extended Data Fig. 1| Flow diagram of this study. The figure shows the data, key methods and main analyses included in this effort.
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Extended Data Fig. 2 | Locus diagram. Trans-ancestry locus A contains a trans-ancestry lead variant for one glycemic trait represented by the blue

diamond, and another single-ancestry index variant for another glycemic trait represented by the orange triangle. Single-ancestry locus B contains a
single-ancestry lead variant represented by the purple square. The orange, blue and purple bars represent a +/— 500Kb window around the orange,
blue, and purple variants, respectively. The black bars indicate the full locus window where trans-ancestry locus A contains trans-ancestry lead and

single-ancestry index variants for two traits and single-ancestry locus B has a single-ancestry lead variant for a single trait.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Allele frequency versus effect size. Allele frequency versus effect size for all signals detected through the trans-ancestry meta-
analyses, for each of the four traits. Frequency and effect size are from the European meta-analyses. The power curves were computed based on the
European sample size for each trait, and the mean (m) and standard deviation (sd) computed on the FENLAND study: FG, m=4.83 mmol/I, sd=0.68; Fl,
m=3.69 mmol/I, sd=0.60; 2hGlu, m=5.30 mmol/I|, sd=1.74; HbAlc, m=5.55%, sd=0.48.
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Extended Data Fig. 5 | EAF correlation and heterogeneity test. Pearson correlation of EAF on the lower tri-angle and p-value of one-side heterogeneity
test without multiple testing corrections on the upper tri-angle of the trans-ancestry lead variants associated with each trait between ancestries.
Correlations > 0.7 are in bold.
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Extended Data Fig. 6 | Forest plot of T2D GRS from HbA'c variants. The p-value on the right side is from the two-side test without multiple testing
corrections. Vertical points of each diamond represent the point estimate of the odds ratio. The horizontal points of each diamond represent the 95%
confidence interval of the odds ratio. Figure shows the association results between HbAlc-associated variants built into a GRS for T2D by taking each
HbATlc-associated variant and using a weight that corresponds to its T2D effect size (IlogOR) based on analysis by the DIAGRAM consortium. The overall
GRS is subsequently partitioned according to the HbATc signal classification. The overall and partitioned GRS were tested for association with T2D based
on data from UK biobank.
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Ancestry specific and overall meta-analyses summary level results will be available through the MAGIC website (https://www.magicinvestigators.org/) upon
publication. We will share summary statistic through the GWAS catalog. Accession codes of GWAS catalog (https://www.ebi.ac.uk/gwas/): GCST90002225,
GCST90002226, GCST90002227, GCST90002228, GCST90002229, GCST90002230, GCST90002231, GCST90002232, GCST90002233, GCST90002234,
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Sample size We aimed to bring together the largest possible sample size with GWAS data imputed to 1000 Genomes Project reference panel, of
individuals from diverse ancestries (European, Hispanic, African American, East Asian, South Asian and sub-Saharan African) without diabetes
and with data for one or more of the following traits: fasting glucose, fasting insulin, 2hr post-challenge glucose and glycated haemoglobin.
The sample sizes are 281,416 (FG), 213,650 (Fl), 215,977 (HbA1lc) and 85,916 (2hGlu). Imputation was performed up to the 1000 Genomes
Project phase 1 (v3) cosmopolitan reference panel, with a small number of cohorts imputing up to the 1000 Genomes phase 3 panel or
population-specific reference panels (see Supplementary Table 1).0ur sample size was sufficiently powered to detect common variant
associations with each of the glycaemic traits and was able to detect associations at 242 loci.

Data exclusions  Prior to conducting this study, we identified reasons for which data should be excluded from the analysis at either the cohort or summary
level; these exclusions are as follows. Sample quality control checks included removing samples with low call rate < 95%, extreme
heterozygosity, sex mismatch with X chromosome variants, duplicates, first- or second-degree relatives (unless by design), or ancestry
outliers. Following sample QC, cohorts applied variant QC thresholds for call rate (< 95%), Hardy-Weinberg Equilibrium (HWE) P < 1x10-6, and
minor allele frequency (MAF). Full details of QC thresholds and exclusions by participating cohort are available in Supplementary Table 1. Each
contributing cohort shared their summary statistic results with the central analysis group who performed additional QC using EasyQC. Allele
frequency estimates were compared to estimates from 1000Gp1 reference panel, and variants were excluded from downstream analyses if
there was a minor allele frequency difference > 0.2 for AA, EUR, HISP, and EAS populations against AFR, EUR, MXL, and ASN populations from
1000 Genomes Phase 1, respectively, or a minor allele frequency difference > 0.4 for SAS against EUR populations. At this stage, additional
variants were excluded from each cohort file if they met one of the following criteria: were tri-allelic; had a minor allele count (MAC) < 3;
demonstrated a standard error of the effect size > 10; imputation r2 < 0.4 or INFO score < 0.4; or were missing an effect estimate, standard
error, or imputation quality.

Replication Because we used all data available for discovery no replication was attempted.

Randomization  This study meta-analyzed existing data and did not require randomization.
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Blinding This study meta-analyzed existing data and did not require blinding.
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Population characteristics This study included trait data from four glycaemic traits: fasting glucose (FG), fasting insulin (Fl), 2hr post-challenge glucose
(2hGlu), and glycated haemoglobin (HbAlc). The total numbers of contributing cohorts are 131 (FG), 107 (Fl), 78 (HbA1c) and
41 (2hGlu), and the sample sizes are 281,416 (FG), 213,650 (Fl), 215,977 (HbAlc) and 85,916 (2hGlu). Relevant characteristics
include age, sex and BMI. Sample characteristics of each cohort is described in Supplementary Table 1.

Recruitment Participants were originally recruited from 150 individual case-control and cohort studies totalling over 280,000 participants.
Details of each participating study are in Supplementary Table 1. Individuals were excluded if they had type 1 or type 2
diabetes (defined by physician diagnosis); reported use of diabetes-relevant medication(s); or had a FG =7 mmol/L, 2hGlu
>11.1mmol/L, or HbAlc > 6.5%, as detailed in Supplementary Table 1. 2hGlu measures were obtained 120 minutes after a
glucose challenge in an oral glucose tolerance test (OGTT). Measures for FG and Fl taken from whole blood were corrected to
plasma level using the correction factor 1.13. Each individual study is subject to potential bias due to its original study design.
However, no individual study should impact our findings.

Ethics oversight All studies were approved by relevant institutional review boards or regional/national ethics committees. All individuals
provided informed consent. Specifically: All ABCD participants gave written informed consent for data collection of the
phenotypes. Regarding the DNA collection and analysis, an opt-out procedure was used. The ABCD study protocol was
approved by the Central Committee on Research Involving Human Subjects in The Netherlands, the medical ethics review
committees of the participating hospitals, and the Registration Committee of the Municipality of Amsterdam.

The AGES-Reykjavik Study was approved by the Icelandic National Bioethics Committee (VSN 00-063) and by the Institutional
Review Board of the US National Institute on Aging, NIH. All participants signed an informed consent. Ethical approval for the
ALSPAC study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. Consent
for biological samples has been collected in accordance with the Human Tissue Act (2004). Informed consent for the use of
data collected via questionnaires and clinics was obtained from participants following the recommendations of the ALSPAC
Ethics and Law Committee at the time. All study protocols for the AMISH study were approved by the institutional review
board at the University of Maryland Baltimore. Informed consent was obtained from each study participant. IRB approvals for
ARIC were obtained at all study sites (including DCC UNC Chapel Hill). All study participants provided written informed
consent. The ASCOT study protocols were reviewed and ratified by central and regional ethics review boards in the UK and by
national ethics and statutory bodies in Ireland and the Nordic countries (Sweden, Denmark, Iceland, Norway, and Finland).
Patients were recruited between February 1998 and May 2000. All patients provided written informed consent. The BC1936
was approved by the Ethical Committee of Copenhagen County (KA96008) and the Danish Data Protection Agency. All
participants provided written informed consent. The Beijing Eye Study was approved by the Medical Ethics Committee of the
Beijing Tongren Hospital and all participants gave informed written consent. The BetaGene Study was approved by the
Institutional Review Boards of the University of Southern Californai and Kaiser Permanente Southern California. All
participants provided writeen informed consent. The BioMe cohort was approved by the Institutional Review Board at the
Icahn School of Medicine at Mount Sinai. All BioMe participants provided written, informed consent for genomic data
sharing. The CAGE-GWAS1 was approved by the Institutional Review Boards at the National Center for Global Health and
Medicine. All participants provided written informed consent. The CAGE-KING was approved by the ethics committees of
Aichi Gakuin University, Jichi Medical University, Nagoya University, and Kyushu University; and all participants provided
written informed consent. The CHNS was approved by the Institutional Review Boards at the University of North Carolina at
Chapel Hill, the Chinese National Human Genome Center at Shanghai, and the Institute of Nutrition and Food Safety at the
China Centers for Disease Control. All participants provided written informed consent. CHS was approved by the Institutional
Review Boards at the Wake Forest University, University of California, Davis, Johns Hopkins and University of Pittsburgh. All
participants provided written informed consent. The Cleveland Family Study was approved by the Institutional Review Board
of Mass General Brigham (formerly Partners HealthCare). Written informed consent was obtained from all participants.
Written informed consent for CLHNS was obtained from all participants, and study protocols were approved by the University
of North Carolina Institute Review Board for the Protection of Human Subjects. The institutional Ethics Committee of the
University of Lausanne, which afterwards became the Ethics Commission of Canton Vaud (www.cer-vd.ch) approved the




baseline Colaus study (reference 16/03, decisions of 13th January and 10th February 2003). The approval was renewed for
the first (reference 33/09, decision of 23rd February 2009), the second (reference 26/14, decision of 11th March 2014) and
the third (reference PB_2018-00040, decision of 20th March 2018) follow-ups. The study was performed in agreement with
the Helsinki declaration and its former amendments, and in accordance with the applicable Swiss legislation. All participants
gave their signed informed consent before entering the study. The COPSAC2000 study was approved by the Local Ethics
Committee (KF 01-289/96) and the Danish Data Protection Agency (2008-41-1754). All participants and parents provided
written informed consent. The CROATIA_Korcula cohort was approved by the Institutional Review Board at the University of
Split, Croatia. All participants provided written, informed consent. The CROATIA_Split cohort was approved by the
Institutional Review Board at the University of Split, Croatia. All participants provided written, informed consent. The
CROATIA_Vis cohort was approved by the Institutional Review Board at the Universities of Zagreb, Croatia and Edinburgh,
Scotland. All participants provided written, informed consent. The DPS was a randomized, controlled, multicenter study
carried out in Finland between the years 1993 and 2001 (ClinicalTrials.gov NCT00518167). The study protocol was approved
by the Ethics Committee of the National Public Health Institute of Helsinki, Finland. The study design and procedures of the
study were carried out in accordance with the principles of the Declaration of Helsinki. All study participants provided written
informed consent. The DRECA studies were approved by the Ethical and Research Commission of the primary health
assistance district of Seville 1992 and 2006. All participants, those in the first study and in the second follow up provided a
signed informed consent. The DR's EXTRA was a randomized controlled trial between years 2005 and 2011
(ISRCTN45977199). The study protocol was approved by the Research Ethics committee of the Hospital Districk of Nothern
Savo, Finland. The participants gave signed informed consent. All analyses in EGCUT were approved by the Ethics Review
Committee of the University of Tartu. All participants provided written informed consent. The Ely study was approved by the
Cambridge Local Research Ethics Committee (99/246). All participants in the EPIC-InterAct study gave written informed
consent and ethical approval was given by the ethics committees of the International Agency for Research on Cancer and the
local institutions. The EPIC-Norfolk study was approved by the Norfolk Research Ethics Committee (ref. 05/Q0101/191) and
all participants gave their written consent before entering the study. The EpiHealth study was approved by the Ethics
Committee of Uppsala University. Each participant gave their written informed consent. The ERF study was approved by the
Institutional Review Board at the Erasmus University Medical Center, Rotterdam, the Netherlands. All participants provided
written informed consent. The Family Heart Study (FamHS) was approved by the Institutional Review Board at the
Washington University in St. Louis. Written informed consent including consent to participate in genetic studies was obtained
from each participant. Ethical approval for the Fenland study was given by the Cambridge Local Ethics committee (ref. 04/
Q0108/19) and all participants gave their written consent prior to entering the study. The Framingham Heart Study was
approved by the Institutional Review Board of the Boston University Medical Center. All study participants provided written
informed consent. The French adult and young studies followed ethical principles defined in the Helsinki declaration, and
they were approved by local ethical committees from Comité Consultatif de Protection des Personnes se prétant a des
Recherches Biomédicales (CPPRB) of Lille - Lille Hospital (Lille, France), Hotel-Dieu hospital (France) and Bicétre hospital
(France). All participants older than 18 years signed an informed consent form. Oral assent from children or adolescents was
obtained and parents (or legal guardian) signed an informed consent form." FUSION was approved by the coordinating Ethics
Committee of the Hospital District of Helsinki and Uusimaa. All participants gave written informed consent. Ethical approval
for the GS:SFHS study was obtained from the Tayside Committee on Medical Research Ethics (on behalf of the National
Health Service. It has Research Tissue Bank approval from East of Scotland Research Ethics Service (ref ES-20-0021). The
GeneSTAR study was approved by the Johns Hopkins Medicine Institutional Review Board. All participants gave written
informed consent. Written informed consent for GENOA was obtained from all subjects and approval was granted by
participating institutional review boards (University of Michigan, University of Mississippi Medical Center, and Mayo Clinic).
The Tayside Medical Ethics Committee has approved the GoDARTS study and informed consent was obtained for all
participants. The participants have consented to research on their samples and data. The data included in the MAGIC 1KG
Trans-ancestry meta-analysis stems from the ADIGEN project, a subset of the original GOYA study. The ADIGEN project was
approved by the Committee on Health Research Ethics for Copenhagen and Frederiksberg Districts, and the Danish Data
Protection Agency. All participants gave written informed consent. The HANDSL Study has been approved by the National
Institutes of Health Institutional Review Board study number 09AGN248. All participants provided written informed consent.
This HCHS/SOL study was approved by the institutional review boards (IRBs) at each field center, where all participants gave
written informed consent, and by the Non-Biomedical IRB at the University of North Carolina at Chapel Hill, to the HCHS/SOL
Data Coordinating Center. All IRBs approving the study are: Non-Biomedical IRB at the University of North Carolina at Chapel
Hill. Chapel Hill, NC; Einstein IRB at the Albert Einstein College of Medicine of Yeshiva University. Bronx, NY; IRB at Office for
the Protection of Research Subjects (OPRS), University of Illinois at Chicago. Chicago, IL; Human Subject Research Office,
University of Miami. Miami, FL; Institutional Review Board of San Diego State University. San Diego, CA. The Health2006 was
approved by the Ethical Committee of Copenhagen County (KA20060011) and the Danish Data Protection Agency. All
participants provided written informed consent. The HELIC collections include blood for DNA extraction, laboratory-based
haematological and biochemical measurements, and interview-based questionnaire data. The study was approved by the
Harokopio University Bioethics Committee, and informed consent was obtained from human subjects. The HTN-IR study was
approved by Human Subjects Protection Institutional Review Boards at UCLA, the University of Southern California,
Lundquist/LA BioMed/Harbor-UCLA and Cedars-Sinai Medical Center. The IMPROVE study was approved by all local IRBs and
by the 7 independent ethics committees: 1) The Consultative Committee for the Protection of Persons in Biomedical
Research, Pitié Salpetriére site, Paris, France; 2) The Medical Ethics Review Committee - Academic Hospital Groningen —
Groningen, the Netherlands; 3) The Research Ethics Committee of Northern Savonia Hospital District. - Kuopio University
Hospital — Kuopio, Finland; 4) The Research Ethics Committee of the University of Kuopio and Kuopio University Hospital —
Kuopio, Finland; 5) The Ethical-Scientific Commission of the Niguarda Ca' Granda Hospital - Milan, Italy; 6) The Ethics
Committee of the Umbrian Health Authorities - Perugia, Italy; and 7) The Research Ethics Committee / North Karolinska
Hospital Administration H6 171 76 Stockholm, Sweden. All participants gave written informed consent. The Inter99 was
approved by the Ethical Committee of Copenhagen County (KA98155) and the Danish Data Protection Agency. All
participants provided written informed consent. The institutional review boards at the University of Colorado/Denver,
UTHSC-San Antonio, Kaiser Permanente-Northern CA, UCLA, and the Wake Forest School of Medicine, approved the IRAS and
IRASFS study protocol and all participants provided written informed consent. The JHS study was approved by Jackson State
University, Tougaloo College, and the University of Mississippi Medical Center IRBs, and all participants provided written
informed consent. All participants of KARE provided written informed consent. The study using KARE samples was approved
by an institutional review board at the Korean National Institute of Health, Republic of Korea. All participants of the KORA F4
study provided informed consent, which was approved by the Ethics Committee of the Medical Association of Bavaria (Ethics
Committee Number 06068). The Leiden Longevity Study protocol was approved by the ethical committee of the Leiden
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University Medical Center (P01.113) and conducted according to the principles of the declaration of Helsinki. All participants
provided written informed consent. The Leipzig adult study was approved by Leipzig University Ethics committee (Reg.No.
031-2006 and 017-12-23012012). Written informed consent was obtained from all participants. Informed written consent
was provided by all parents and children from the age of 12 years. All participants in the Lifelines cohort study signed an
informed consent. The Lifelines cohort study is conducted according to the principles of the declaration of Helsinki and
following the research code of University Medical Center Groningen and approved by its Medical Ethical Committee. The
Living Biobank study was approved by the National University of Singapore IRB. All participants provided written informed
consent. The LOLIPOP study is approved by the local Research Ethics Committee, and all participants provided written
consent for genetic studies. The LURIC study was approved by the "Landesarztekammer Rheinland-

Pfalz" (#837.255.97(1394)). Informed written consent was obtained from all participants. The MACAD study was approved by
Human Subjects Protection Institutional Review Boards at University of California Los Angeles, Lundquist/LA BioMed/Harbor-
UCLA and Cedars-Sinai Medical Center. The MEGA study was approved by the Ethics Committee of the Leiden University
Medical Center, and written informed consent was obtained from all participants. The MESA Study approved by IRBs at
University of Washington, Wake Forest School of Medicine, Northwestern University, University of Minnesota, Columbia
University, Johns Hopkins University, and the Univ of California at Los Angeles. All participants provided written informed
consent. The METSIM study was approved by the Ethics Committee of the University of Kuopio and Kuopio University
Hospital. All study participants gave written informed consent. The MICROS study was approved by the Ethics Committee of
the Autonomous Province of Bolzano. All study participants gave informed written consent. The ethics committee of Kyoto
University Graduate School of Medicine approved the Nagahama study, and we obtained written informed consent from all
participants. The NEO study was approved by the Medical Ethical Committee of the Leiden University Medical Center. All
participants gave htier written informed consent. For the NFBC1966 and NFBC1986 studies, we used data only from those
participants for whom a written informed consent was obtained. The study has been approved by the ethical committees of
University of Oulu and the Northern Ostrobothnia Hospital District. The NHAPC study protocol was approved by the
Institutional Review Board of the Institute for Nutritional Sciences, Chinese Academy of Sciences and abided by the
Declaration of Helsinki principles. Written informed consent was obtained from all participants. The NIDDM-Athero study was
approved by Human Subjects Protection Institutional Review Boards at the University of Southern California, Lundquist/LA
BioMed/Harbor-UCLA and Cedars-Sinai Medical Center. The NSHD study received Multi-Centre Research Ethics Committee
approval (Central Manchester REC: 07/H1008/168) and informed consent was given by participants. Informed consent was
obtained from all NTR participants. The study protocol was approved by the Central Ethics Committee on Research Involving
Human Subjects of the VU University Medical Centre, Amsterdam. The Orkney Complex Disease Study (ORCADES) was
approved by the Local Research Ethics Committee of NHS Orkney and the North of Scotland Research Ethics Committee. All
participants gave written informed consent. The Ethical Review Board of the Faculty of Medicine of the Federal University of
Pelotas approved the PELOTAS study, and written informed consent was obtained from all participants. The PIVUS study was
approved by the Ethics Committee of Uppsala University. Each participant gave their written informed consent. PREVEND
was approved by the medical ethics committee of the University Medical Center Groningen and conducted in accordance
with the Helsinki Declaration guidelines. All subjects gave written informed consent. PROCARDIS study was approved by the
National Research Ethics Service (NRES) London South East (MREC 99/1/02). The PROSPER study was approved by the
Medical Ethics Committees of the three collaborating centers and complied with the Declaration of Helsinki. All participants
gave written informed consent. The Ragama Health Study was approved by the Institutional Review Boards at the National
Center for Global Health, Tokyo, Japan and the Faculty of Medicine, University of Kelaniya, Sri Lanka (P38/09/2006). All
participants provided written informed consent. The RISC study was approved by the Medical Ethics Committee of each
recruiting centre, and all subjects gave written informed consent. The Rotterdam study was approved by the Institutional
Review Board at the Erasmus University Medical Center, Rotterdam, the Netherlands. All participants provided written
informed consent. THe SardiNIA study received ethical approval from the Comitato Etico di Azienda Sanitaria Locale 8,
Lanusei (2009/0016600) and from the NIH Office of Human Subject Research. the SCARF and SHEEP studies were approved
by the Regional Ethical Review Board at Karolinska Institutet, Stockholm, Sweden. SIGMA study was approved by the
Institutional Review Board of the Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran in Mexico City. All
participants provided written informed consent. The SEED study followed the principles of the Declaration of Helsinki with
ethics approval obtained from the Singapore Eye Research Institute (SERI) Institutional Review Board (IRB). All participants
provided written informed consent. SP2 was approved by the Institutional Review Boards of the National University of
Singapore and the Singapore General Hospital. All participants provided written informed consent. The SORBS study was
approved by Leipzig University Ethics committee. Written informed consent was obtained from all participants. TAICHI study
was performed in accordance with the tenets of the Declaration of Helsinki and approved by the Institutional Review Boards
of each participating centers in the U.S. and Taiwan. The U.S. sites include Stanford University School of Medicine in Stanford,
California; Hudson-Alpha Biotechnology Institute in Huntsville, Alabama; Lundquist/LABioMed/Harbor-UCLA; and Cedars-
Sinai Medical Center (CSMC) in Los Angeles, California. The Taiwan sites include Taichung Veteran’s General Hospitals
(Taichung VGH), Taipei Veterans General Hospital (Taipei VGH), National Health Research Institutes (NHRI), Tri-Service
General Hospital (TSGH), and National Taiwan University Hospital (NTUH). The Cardiometabolic Risk in Chinese (CRC) Study
was reviewed and approved by the ethics committee of the Central Hospital of Xuzhou, Affiliated Hospital of Medical School
of Southeast University, Nanjing, China. Written consent was obtained from each participant. The Human Research Ethics
Committees at the University of Western Australia, King Edward Memorial Hospital and Princess Margaret Hospital in Perth,
Australia, granted ethics approval for each follow-up in the Raine study. Parents, guardians and adolescent participants
provided written informed consent either before enrolment or at data collection at each stage of follow-up. All procedures
for the TRAILS cohort were approved by the Dutch Central Committee on Research Involving Human Subjects. Written
informed consent, including specific consent to undertake genetic analyses, was obtained from participants and their parents
or custodians. The TRIPOD Study was approved by the Institutional Review Board of the University of Southern California. All
participants gave written informed consent. The Tromsg Study was approved by the Regional Committee for Medical
Research Ethics. All participants gave written informed consent. The TwinGene project was approved by the regional ethics
committee. All participants gave written informed consent. The TwinsUK project was approved by the ethics committee at St
Thomas' Hospital London. All participants gave written informed consent. TWSC was approved by the Institutional Review
Board at the Institute of Biomedicial Sciences, Academia Sinica, Taiwan. All participants provided written informed consent.
UKHLS: The University of Essex Ethics Committee has approved all data collection on Understanding Society main study and
innovation panel waves, including asking consent for all data linkages except to health records. Requesting consent for health
record linkage was approved at Wave 1 by the National Research Ethics Service (NRES) Oxfordshire REC A (08/H0604/124), at
BHPS Wave 18 by the NRES Royal Free Hospital & Medical School (08/H0720/60) and at Wave 4 by NRES Southampton REC A
(11/5C/0274). Approval for the collection of biosocial data by trained nurses in Waves 2 and 3 of the main survey was
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obtained from the National Research Ethics Service (Understanding Society - UK Household Longitudinal Study: A Biosocial
Component, Oxfordshire A REC, Reference: 10/H0604/2). The ULSAM study was approved by the Ethics Committee of
Uppsala University. Each participant gave their written informed consent. The Shanghai Breast Cancer and Shanghai Men’s
Health studies were approved by the IRB of the Vanderbilt University Medical Center and Shanghai Cancer Institute. All
participants provided written informed consent to the study. The VIKING study was approved by the South East Scotland
Research Ethics Committee. All participants gave written informed consent. The WHI project was reviewed and approved by
the Fred Hutchinson Cancer Research Center (Fred Hutch) IRB in accordance with the U.S. Department of Health and Human
Services regulations at 45 CFR 46 (approval number: IR# 3467-EXT). Participants provided written informed consent to
participate. Additional consent to review medical records was obtained through signed written consent. Fred Hutch has an
approved FWA on file with the Office for Human Research Protections (OHRP) under assurance number 0001920. In the
Whitehall Il study, informed consent and research ethics are renewed at each clinical examination; the most recent approval
was from the University College London Hospital Committee on the Ethics of Human Research, reference 85/0938. Analysis
in the WGHS was approved by the Institutional Review Board (IRB) of Brigham and Women's Hospital.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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