363 research outputs found

    The Dynamical Evolution of the Pleiades

    Full text link
    We present the results of a numerical simulation of the history and future development of the Pleiades. This study builds on our previous one that established statistically the present-day structure of this system. Our simulation begins just after molecular cloud gas has been expelled by the embedded stars. We then follow, using an N body code, the stellar dynamical evolution of the cluster to the present and beyond. Our initial state is that which evolves, over the 125 Myr age of the cluster, to a configuration most closely matching the current one. We find that the original cluster, newly stripped of gas, already had a virial radius of 4 pc. This configuration was larger than most observed, embedded clusters. Over time, the cluster expanded further and the central surface density fell by about a factor of two. We attribute both effects to the liberation of energy from tightening binaries of short period. Indeed, the original binary fraction was close to unity. The ancient Pleiades also had significant mass segregation, which persists in the cluster today. In the future, the central density of the Pleiades will continue to fall. For the first few hundred Myr, the cluster as a whole will expand because of dynamical heating by binaries. The expansion process is aided by mass loss through stellar evolution, which weakens the system's gravitational binding. At later times, the Galactic tidal field begins to heavily deplete the cluster mass. It is believed that most open clusters are eventually destroyed by close passage of a giant molecular cloud. Barring that eventuality, the density falloff will continue for as long as 1 Gyr, by which time most of the cluster mass will have been tidally stripped away by the Galactic field.Comment: 45 pages, 13 figures, 2 tables; Accepted for publication in MNRA

    The diagnosis of mental disorders: the problem of reification

    Get PDF
    A pressing need for interrater reliability in the diagnosis of mental disorders emerged during the mid-twentieth century, prompted in part by the development of diverse new treatments. The Diagnostic and Statistical Manual of Mental Disorders (DSM), third edition answered this need by introducing operationalized diagnostic criteria that were field-tested for interrater reliability. Unfortunately, the focus on reliability came at a time when the scientific understanding of mental disorders was embryonic and could not yield valid disease definitions. Based on accreting problems with the current DSM-fourth edition (DSM-IV) classification, it is apparent that validity will not be achieved simply by refining criteria for existing disorders or by the addition of new disorders. Yet DSM-IV diagnostic criteria dominate thinking about mental disorders in clinical practice, research, treatment development, and law. As a result, the modernDSMsystem, intended to create a shared language, also creates epistemic blinders that impede progress toward valid diagnoses. Insights that are beginning to emerge from psychology, neuroscience, and genetics suggest possible strategies for moving forward

    Hubble-COS Observations of Galactic High-Velocity Clouds: Four AGN Sight Lines through Complex C

    Full text link
    We report ultraviolet spectra of Galactic high-velocity clouds (HVCs) in Complex C, taken by the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), together with new 21-cm spectra from the Green Bank Telescope. The wide spectral coverage and higher S/N, compared to previous HST spectra, provide better velocity definition of the HVC absorption, additional ionization species, and improved abundances in this halo gas. Complex C has a metallicity of 0.1-0.3 solar and a wide range of ions, suggesting dynamical and thermal interactions with hot gas in the Galactic halo. Spectra in the COS medium-resolution G130M (1133-1468 A) and G160M (1383-1796 A) gratings detect ultraviolet absorption lines from 8 elements in low ionization stages (O I, N I, C II, S II, Si II, Al II, Fe II, P II) and 3 elements in intermediate and high-ionization states (Si III, Si IV, C IV, N V). Our four AGN sight lines toward Mrk 817, Mrk 290, Mrk 876, and PG1259+593 have high-velocity H I and O VI column densities, log N_HI = 19.39-20.05 and log N_OVI = 13.58-14.10, with substantial amounts of kinematically associated photoionized gas. The high-ion abundance ratios are consistent with cooling interfaces between photoionized gas and collisionally ionized gas: N(C IV)/N(O VI) = 0.3-0.5, N(Si IV)/N(O VI) = 0.05-0.11, N(N V)/N(O VI) = 0.07-0.13, and N(Si IV)/N(Si III) = 0.2.Comment: 43 pages, 11 figures (appearing in ApJ, Sept 1, 2011

    HST-COS Observations of Hydrogen, Helium, Carbon and Nitrogen Emission from the SN 1987A Reverse Shock

    Get PDF
    We present the most sensitive ultraviolet observations of Supernova 1987A to date. Imaging spectroscopy from the Hubble Space Telescope-Cosmic Origins Spectrograph shows many narrow (dv \sim 300 km/s) emission lines from the circumstellar ring, broad (dv \sim 10 -- 20 x 10^3 km/s) emission lines from the reverse shock, and ultraviolet continuum emission. The high signal-to-noise (> 40 per resolution element) broad LyA emission is excited by soft X-ray and EUV heating of mostly neutral gas in the circumstellar ring and outer supernova debris. The ultraviolet continuum at \lambda > 1350A can be explained by HI 2-photon emission from the same region. We confirm our earlier, tentative detection of NV \lambda 1240 emission from the reverse shock and we present the first detections of broad HeII \lambda1640, CIV \lambda1550, and NIV] \lambda1486 emission lines from the reverse shock. The helium abundance in the high-velocity material is He/H = 0.14 +/- 0.06. The NV/H-alpha line ratio requires partial ion-electron equilibration (T_{e}/T_{p} \approx 0.14 - 0.35). We find that the N/C abundance ratio in the gas crossing the reverse shock is significantly higher than that in the circumstellar ring, a result that may be attributed to chemical stratification in the outer envelope of the supernova progenitor. The N/C abundance ratio may have been stratified prior to the ring expulsion, or this result may indicate continued CNO processing in the progenitor subsequent to the expulsion of the circumstellar ring.Comment: 12 pages, 8 figures. ApJ - accepte

    A peculiar HI cloud near the distant globular cluster Pal 4

    Full text link
    We present 21-cm observations of four Galactic globular clusters, as part of the on-going GALFA-HI Survey at Arecibo. We discovered a peculiar HI cloud in the vicinity of the distant (109 kpc) cluster Pal 4, and discuss its properties and likelihood of association with the cluster. We conclude that an association of the HI cloud and Pal 4 is possible, but that a chance coincidence between Pal 4 and a nearby compact high-velocity cloud cannot be ruled out altogether. New, more stringent upper limits were derived for the other three clusters: M 3, NGC 5466, and Pal 13. We briefly discuss the fate of globular cluster gas and the interaction of compact clouds with the Galactic Halo gas.Comment: Accepted for publication in MNRA

    Variable Sodium Absorption in a Low-Extinction Type Ia Supernova

    Get PDF
    Recent observations have revealed that some Type Ia supernovae exhibit narrow, time-variable Na I D absorption features. The origin of the absorbing material is controversial, but it may suggest the presence of circumstellar gas in the progenitor system prior to the explosion, with significant implications for the nature of the supernova progenitors. We present the third detection of such variable absorption, based on six epochs of high-resolution spectroscopy of the Type Ia supernova SN 2007le from Keck and the HET. The data span ~3 months, from 5 days before maximum light to 90 days after maximum. We find that one component of the Na D absorption lines strengthened significantly with time, indicating a total column density increase of ~2.5 x 10^12 cm^-2. The changes are most prominent after maximum light rather than at earlier times when the UV flux from the SN peaks. As with SN 2006X, we detect no change in the Ca II H&K lines over the same time period, rendering line-of-sight effects improbable and suggesting a circumstellar origin for the absorbing material. Unlike the previous two SNe exhibiting variable absorption, SN 2007le is not highly reddened (E_B-V = 0.27 mag), also pointing toward circumstellar rather than interstellar absorption. Photoionization models show that the data are consistent with a dense (10^7 cm^-3) cloud or clouds of gas located ~0.1 pc from the explosion. These results broadly support the single-degenerate scenario previously proposed to explain the variable absorption, with mass loss from a nondegenerate companion star responsible for providing the circumstellar gas. We also present tentative evidence for narrow Halpha emission associated with the SN, which will require followup observations at late times to confirm. [abridged]Comment: 16 pages, 10 figures (8 in color), 5 tables. Accepted for publication in Ap

    The ionization fraction in alpha-models of protoplanetary disks

    Full text link
    We calculate the ionization fraction of protostellar alpha disks, taking into account vertical temperature structure, and the possible presence of trace metal atoms. Both thermal and X-ray ionization are considered. Previous investigations of layered disks used radial power-law models with isothermal vertical structure. But alpha models are used to model accretion, and the present work is a step towards a self-consistent treatment. The extent of the magnetically uncoupled (``dead'') zone depends sensitively on alpha, on the assumed accretion rate, and on the critical magnetic Reynolds number, below which MHD turbulence cannot be self-sustained. Its extent is extremely model-dependent. It is also shown that a tiny fraction of the cosmic abundance of metal atoms can dramatically affect the ionization balance. Gravitational instabilities are an unpromising source of transport, except in the early stages of disk formation.Comment: 25 pages including 8 figures, Latex in the MN style - Accepted by MNRA

    Galaxy Zoo: dust and molecular gas in early-type galaxies with prominent dust lanes

    Get PDF
    We study dust and associated molecular gas in 352 nearby early-type galaxies (ETGs) with prominent dust lanes. 65% of these `dusty ETGs' (D-ETGs) are morphologically disturbed, suggesting a merger origin. This is consistent with the D-ETGs residing in lower density environments compared to the controls drawn from the general ETG population. 80% of D-ETGs inhabit the field (compared to 60% of the controls) and <2% inhabit clusters (compared to 10% of the controls). Compared to the controls, D-ETGs exhibit bluer UV-optical colours (indicating enhanced star formation) and an AGN fraction that is more than an order of magnitude greater (indicating higher incidence of nuclear activity). The clumpy dust mass residing in large-scale features is estimated, using the SDSS r-band images, to be 10^{4.5}-10^{6.5} MSun. A comparison to the total (clumpy + diffuse) dust masses- calculated using the far-IR fluxes of 15% of the D-ETGs that are detected by the IRAS- indicates that only ~20% of the dust resides in these large-scale features. The dust masses are several times larger than the maximum value expected from stellar mass loss, ruling out an internal origin. The dust content shows no correlation with the blue luminosity, indicating that it is not related to a galactic scale cooling flow. No correlation is found with the age of the recent starburst, suggesting that the dust is accreted directly in the merger rather than being produced in situ by the triggered star formation. Using molecular gas-to-dust ratios of ETGs in the literature we estimate that the median current and initial molecular gas fraction are ~1.3% and ~4%, respectively. Recent work suggests that the merger activity in nearby ETGs largely involves minor mergers (mass ratios between 1:10 and 1:4). If the IRAS-detected D-ETGs form via this channel, then the original gas fractions of the accreted satellites are 20%-44%. [Abridged]Comment: 11 pages, 18 figures, 1 table, MNRAS (Accepted for publication- 2012 March 19

    Predictors of Peritraumatic Reactions and PTSD Following the September 11th Terrorist Attacks

    Full text link
    In this study the authors characterize peritraumatic reactions of residents of New York City during and immediately following the September 11th terrorist attacks, identify predictors of those reactions, and identify predictors of PTSD 4 months later. A cross–sectional sample of New York residents (n = 2,001) responded to questions about sociodemographics, historical factors, event–related exposure; acute cognitive, emotional, and physiological reactions to the September 11th terrorist attacks; and current (past month) PTSD symptoms. Factor analyses of peritraumatic reactions yielded three related, but distinct, peritraumatic response patterns—dissociation, emotional reactions, and panic/physiological arousal. Several demographic, historical, and exposure–related variables predicted one or more peritraumatic reaction patterns. After controlling for demographic, historical, and exposure factors, each of the peritraumatic reactions factors, one historical factor and one event–related exposure factor remained as significant predictors of PTSD. These results support a growing literature concerning the predictive value of peritraumatic reactions in relation to PTSD. Implications for preventive efforts and suggestions for future research are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/40315/2/Lawyer_Predictors of peritraumatic reactions and PTSD_2006.pd
    corecore