1,763 research outputs found

    Early Results from the Chandra X-ray Observatory

    Full text link
    We present some early results on AGN from the Chandra X-ray Observatory, highlighting high resolution spectroscopy using the High Energy Transmission Grating Spectrometer (HETGS). The quasar PKS 0637-752 was found to have a very bright X-ray jet whose shape is remarkably similar to that of the radio jet on a size scale of 100 kpc, but the X-ray emission is still inexplicably bright. Two BL Lac objects, PKS 2155-304 and Mrk 421, observed with the spectrometer were found to have no strong absorption or emission features. Other radio loud AGN observed with the HETGS show simple power law spectra without obvious features.Comment: Contributed talk presented at the Joint MPE,AIP,ESO workshop on NLS1s, Bad Honnef, Dec. 1999, to appear in New Astronomy Reviews; also available at http://wave.xray.mpe.mpg.de/conferences/nls1-worksho

    Time-domain modelling of Extreme-Mass-Ratio Inspirals for the Laser Interferometer Space Antenna

    Full text link
    When a stellar-mass compact object is captured by a supermassive black hole located in a galactic centre, the system losses energy and angular momentum by the emission of gravitational waves. Subsequently, the stellar compact object evolves inspiraling until plunging onto the massive black hole. These EMRI systems are expected to be one of the main sources of gravitational waves for the future space-based Laser Interferometer Space Antenna (LISA). However, the detection of EMRI signals will require of very accurate theoretical templates taking into account the gravitational self-force, which is the responsible of the stellar-compact object inspiral. Due to its potential applicability on EMRIs, the obtention of an efficient method to compute the scalar self-force acting on a point-like particle orbiting around a massive black hole is being object of increasing interest. We present here a review of our time-domain numerical technique to compute the self-force acting on a point-like particle and we show its suitability to deal with both circular and eccentric orbits.Comment: 4 pages, 2 figures, JPCS latex style. Submitted to JPCS (special issue for the proceedings of the Spanish Relativity Meeting (ERE2010)

    Future prospects for high resolution X-ray spectrometers

    Get PDF
    Capabilities of the X-ray spectroscopy payloads were compared. Comparison of capabilities of AXAF in the context of the science to be achieved is reported. The Einstein demonstrated the tremendous scientific power of spectroscopy to probe deeply the astrophysics of all types of celestial X-ray source. However, it has limitations in sensitivity and resolution. Each of the straw man instruments has a sensitivity that is at least an order of magnitude better than that of the Einstein FPSC. The AXAF promises powerful spectral capability

    X-ray Isophote Shapes and the Mass of NGC 3923

    Get PDF
    We present analysis of the shape and radial mass distribution of the E4 galaxy NGC 3923 using archival X-ray data from the ROSAT PSPC and HRI. The X-ray isophotes are significantly elongated with ellipticity e_x=0.15 (0.09-0.21) (90% confidence) for semi-major axis a\sim 10h^{-1}_70 kpc and have position angles aligned with the optical isophotes within the estimated uncertainties. Applying the Geometric Test for dark matter, which is independent of the gas temperature profile, we find that the ellipticities of the PSPC isophotes exceed those predicted if M propto L at a marginal significance level of 85% (80%) for oblate (prolate) symmetry. Detailed hydrostatic models of an isothermal gas yield ellipticities for the gravitating matter, e_mass=0.35-0.66 (90% confidence), which exceed the intensity weighted ellipticity of the R-band optical light, = 0.30 (e_R^max=0.39). We conclude that mass density profiles with rho\sim r^{-2} are favored over steeper profiles if the gas is essentially isothermal (which is suggested by the PSPC spectrum) and the surface brightness in the central regions (r<~15") is not modified substantially by a multi-phase cooling flow, magnetic fields, or discrete sources. We argue that these effects are unlikely to be important for NGC 3923. (The derived e_{mass} range is very insensitive to these issues.) Our spatial analysis also indicates that the allowed contribution to the ROSAT emission from a population of discrete sources with Sigma_x propto Sigma_R is significantly less than that indicated by the hard spectral component measured by ASCA.Comment: 14 pages (6 figures), To Appear in MNRA

    X-ray Constraints on the Intrinsic Shape of the Lenticular Galaxy NGC 1332

    Get PDF
    We have analyzed ROSAT PSPC X-ray data of the optically elongated S0 galaxy NGC 1332 with the purposes of constraining the intrinsic shape of its underlying mass and presenting a detailed investigation of the uncertainties resulting from the assumptions underlying this type of analysis. The X-ray isophotes are elongated with ellipticity 0.100.270.10 - 0.27 (90% confidence) for semi-major axes 75\arcsec -90\arcsec and have orientations consistent with the optical isophotes (ellipticity 0.43\sim 0.43). The spectrum is poorly constrained by the PSPC data and cannot rule out sizeable radial temperature gradients or an emission component due to discrete sources equal in magnitude to the hot gas. Using (and clarifying) the "geometric test" for dark matter, we determined that the hypothesis that mass-traces-light is not consistent with the X-ray data at 68% confidence and marginally consistent at 90% confidence independent of the gas temperature profile. Detailed modeling gives constraints on the ellipticity of the underlying mass of \epsilon_{mass} = 0.47 - 0.72 (0.31 - 0.83) at 68% (90%) confidence for isothermal and polytropic models. The total mass of the isothermal models within a=43.6 kpc (D = 20h^{-1}_{80} Mpc) is M_{tot} = (0.38 - 1.7) \times 10^{12}M_{\sun} (90% confidence) corresponding to total blue mass-to-light ratio \Upsilon_B = (31.9 - 143) \Upsilon_{\sun}. Similar results are obtained when the dark matter is fit directly using the known distributions of the stars and gas. When possible rotation of the gas and emission from discrete sources are included flattened mass distributions are still required, although the constraints on \epsilon_{mass}$, but not the total mass, are substantially weakened.Comment: 45 pages (figures missing), PostScript, to appear in ApJ on January 20, 199
    corecore