596 research outputs found

    The matricial relaxation of a linear matrix inequality

    Full text link
    Given linear matrix inequalities (LMIs) L_1 and L_2, it is natural to ask: (Q1) when does one dominate the other, that is, does L_1(X) PsD imply L_2(X) PsD? (Q2) when do they have the same solution set? Such questions can be NP-hard. This paper describes a natural relaxation of an LMI, based on substituting matrices for the variables x_j. With this relaxation, the domination questions (Q1) and (Q2) have elegant answers, indeed reduce to constructible semidefinite programs. Assume there is an X such that L_1(X) and L_2(X) are both PD, and suppose the positivity domain of L_1 is bounded. For our "matrix variable" relaxation a positive answer to (Q1) is equivalent to the existence of matrices V_j such that L_2(x)=V_1^* L_1(x) V_1 + ... + V_k^* L_1(x) V_k. As for (Q2) we show that, up to redundancy, L_1 and L_2 are unitarily equivalent. Such algebraic certificates are typically called Positivstellensaetze and the above are examples of such for linear polynomials. The paper goes on to derive a cleaner and more powerful Putinar-type Positivstellensatz for polynomials positive on a bounded set of the form {X | L(X) PsD}. An observation at the core of the paper is that the relaxed LMI domination problem is equivalent to a classical problem. Namely, the problem of determining if a linear map from a subspace of matrices to a matrix algebra is "completely positive".Comment: v1: 34 pages, v2: 41 pages; supplementary material is available in the source file, or see http://srag.fmf.uni-lj.si

    Agent-based performance assessment tool for general aviation operations under free flight

    Full text link
    The objective of this research is to design and demonstrate an agent-based modeling and analysis tool for evaluating General Aviation (GA) pilot situation awareness under free flight air traffic management (ATM). A computational tool is developed to assess free flight's potential effect on GA operators, by combining an agent-based representation of the overall pilot/vehicle/ATM system with quantitative modelbased metrics of pilot SA. The model's performance is demonstrated in a set of simulation trials designed to measure the pilot agent's ability to recognize and correctly assess protected zone conflicts in free flight ATM, using information available from a hypothetical cockpit display of traffic information. A set of simulations is presented to examine the effect of sensor accuracy and attention allocation on pilot awareness of protected zone conflict hazards posed by intruder aircraft. The results show that reducing sensor accuracy leads to an increase in overall SA error, and that the pilot agent divides its attention over multiple traffic hazards in proportion to each intruder's hazard potential. This attention-sharing varies dynamically as the conflict situation changes, in a manner that is consistent with intuitive expectations

    Long-Term Preservation of Cones and Improvement in Visual Function Following Gene Therapy in a Mouse Model of Leber Congenital Amaurosis Caused by Guanylate Cyclase-1 Deficiency

    Get PDF
    Leber congenital amaurosis (LCA) is a severe retinal dystrophy manifesting from early infancy as poor vision or blindness. Loss-of-function mutations in GUCY2D cause LCA1 and are one of the most common causes of LCA, accounting for 20% of all cases. Human GUCY2D and mouse Gucy2e genes encode guanylate cyclase-1 (GC), which is responsible for restoring the dark state in photoreceptors after light exposure. The Glicy2e(-/-) mouse shows partially diminished rod function, but an absence of cone function before degeneration. Although the cones appear morphologically normal, they exhibit mislocalization of proteins involved in phototransduction. In this study we tested the efficacy of an rAAV2/8 vector containing the human rhodopsin kinase promoter and the human GUCY2D gene. Following subretinal delivery of the vector in Glicy2e(-/-) mice, GC1 protein was detected in the rod and cone outer segments, and in transduced areas of retina cone transducin was appropriately localized to cone outer segments. Moreover, we observed a dose-dependent restoration of rod and cone function and an improvement in visual behavior of the treated mice. Most importantly, cone preservation was observed in transduced areas up to 6 months post injection. To date, this is the most effective rescue of the Glicy2e(-/-) mouse model of LCA and we propose that a vector, similar to the one used in this study, could be suitable for use in a clinical trial of gene therapy for LCA1

    Mental models of high reliability systems

    Full text link
    Reliable performance in complex systems is determined in part by the ade quacy with which mental models of the system capture accurately the dimen sions of system coupling and system complexity. Failure to register coupling and complexity leads the observer to intervene into an imagined technology that does not exist and to convert opportunities for error into actual errors. To decrease the frequency with which this conversion occurs, people can make their models more complex or the systems they monitor less complex. Neither type of change is as daunting as it may appear, and this is illustrated by an analysis of the mental model and system design associated with the invasion of Grenada.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68652/2/10.1177_108602668900300203.pd

    Unwrapping Closed Timelike Curves

    Full text link
    Closed timelike curves (CTCs) appear in many solutions of the Einstein equation, even with reasonable matter sources. These solutions appear to violate causality and so are considered problematic. Since CTCs reflect the global properties of a spacetime, one can attempt to change its topology, without changing its geometry, in such a way that the former CTCs are no longer closed in the new spacetime. This procedure is informally known as unwrapping. However, changes in global identifications tend to lead to local effects, and unwrapping is no exception, as it introduces a special kind of singularity, called quasi-regular. This "unwrapping" singularity is similar to the string singularities. We give two examples of unwrapping of essentially 2+1 dimensional spacetimes with CTCs, the Gott spacetime and the Godel universe. We show that the unwrapped Gott spacetime, while singular, is at least devoid of CTCs. In contrast, the unwrapped Godel spacetime still contains CTCs through every point. A "multiple unwrapping" procedure is devised to remove the remaining circular CTCs. We conclude that, based on the two spacetimes we investigated, CTCs appearing in the solutions of the Einstein equation are not simply a mathematical artifact of coordinate identifications, but are indeed a necessary consequence of General Relativity, provided only that we demand these solutions do not possess naked quasi-regular singularities.Comment: 29 pages, 9 figure

    Scaffold Translation: Barriers Between Concept and Clinic

    Full text link
    Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90495/1/ten-2Eteb-2E2011-2E0251.pd

    The role of proteomics in defining the human embryonic secretome

    Get PDF
    Non-invasive gamete and embryo assessment is considered an important focus in assisted reproductive technologies (ART). Currently, the selection of embryos for transfer is based on morphological indices. Though successful, the field of ART would benefit from a non-invasive quantitative method of viability determination. Omics technologies, including transcriptomics, proteomics and metabolomics, have already begun providing evidence that viable gametes and embryos possess unique molecular profiles with potential biomarkers that can be utilized for developmental and/or viability selection. Unlike the human genome that is relatively fixed and steady throughout the human body, the human proteome, estimated at over a million proteins, is more complex, diverse and dynamic. It is the proteins themselves that contribute to the physiological homeostasis in any cell or tissue. Of particular interest in ART is the secretome, those proteins that are produced within the embryo and secreted into the surrounding environment. Defining the human embryonic secretome has the potential to expand our knowledge of embryonic cellular processes, including the complex dialogue between the developing embryo and its maternal environment, and may also assist in identifying those embryos with the highest implantation potential. Advances in proteomic technologies have allowed the non-invasive profiling of the human embryonic secretome with ongoing research focused on correlation with outcome. From a clinical perspective, embryo selection based on morphological assessment and non-invasive analysis of the human embryonic secretome may improve IVF success and lead to routine single embryo transfers

    Machine Learning in Automated Text Categorization

    Full text link
    The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual definition of a classifier by domain experts) are a very good effectiveness, considerable savings in terms of expert manpower, and straightforward portability to different domains. This survey discusses the main approaches to text categorization that fall within the machine learning paradigm. We will discuss in detail issues pertaining to three different problems, namely document representation, classifier construction, and classifier evaluation.Comment: Accepted for publication on ACM Computing Survey

    Measurement of the open-charm contribution to the diffractive proton structure function

    Get PDF
    Production of D*+/-(2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 < Q^2 < 200 GeV^2, 0.02 < y < 0.7, x_{IP} < 0.035, beta 1.5 GeV and |\eta(D*+/-)| < 1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities.Comment: 35 pages, 11 figures, 6 table

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore