376 research outputs found

    The sputum transcriptome better predicts COPD exacerbations after the withdrawal of inhaled corticosteroids than sputum eosinophils.

    Full text link
    Introduction: Continuing inhaled corticosteroid (ICS) use does not benefit all patients with COPD, yet it is difficult to determine which patients may safely sustain ICS withdrawal. Although eosinophil levels can facilitate this decision, better biomarkers could improve personalised treatment decisions. Methods: We performed transcriptional profiling of sputum to explore the molecular biology and compared the predictive value of an unbiased gene signature versus sputum eosinophils for exacerbations after ICS withdrawal in COPD patients. RNA-sequencing data of induced sputum samples from 43 COPD patients were associated with the time to exacerbation after ICS withdrawal. Expression profiles of differentially expressed genes were summarised to create gene signatures. In addition, we built a Bayesian network model to determine coregulatory networks related to the onset of COPD exacerbations after ICS withdrawal. Results: In multivariate analyses, we identified a gene signature (LGALS12, ALOX15, CLC, IL1RL1, CD24, EMR4P) associated with the time to first exacerbation after ICS withdrawal. The addition of this gene signature to a multiple Cox regression model explained more variance of time to exacerbations compared to a model using sputum eosinophils. The gene signature correlated with sputum eosinophil as well as macrophage cell counts. The Bayesian network model identified three coregulatory gene networks as well as sex to be related to an early versus late/nonexacerbation phenotype. Conclusion: We identified a sputum gene expression signature that exhibited a higher predictive value for predicting COPD exacerbations after ICS withdrawal than sputum eosinophilia. Future studies should investigate the utility of this signature, which might enhance personalised ICS treatment in COPD patients

    Rapid effects of extrafine beclomethasone dipropionate/formoterol fixed combination inhaler on airway inflammation and bronchoconstriction in asthma: a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dose-dependent anti-inflammatory effects of a recent fixed combination of extrafine beclomethasone dipropionate/formoterol (BDP/F) were investigated using non-invasive markers of inflammation, exhaled nitric oxide (NO) and adenosine monophosphate (AMP) provocative challenge. The aim was to assess the onset of the anti-inflammatory action of low and high doses and evaluate the suitability of non-invasive assessments to demonstrate dose response.</p> <p>Methods</p> <p>Steroid naïve adult out-patients with mild asthma, sensitive to AMP with baseline exhaled NO > 25 parts per billion entered a double-blind, placebo-controlled, 3-way, cross-over study. Patients were randomised to low dose (1 actuation) or high dose (4 actuations) extrafine BDP/F 100/6 μg, or placebo administered twice daily on Days 1 and 2 and once in the morning on Day 3 of each period. Exhaled NO was measured pre-dose on Day 1, then 2 and 4 hours post-administration on Day 3. The AMP challenge was performed 4 hours post-administration on Day 3 and forced expiratory volume in 1 second (FEV<sub>1</sub>, L) was measured from 0 to 4 hours post-dose on Day 1. Endpoints were NO at 2 and 4 hours, AMP challenge at 4 hours after the fifth dose on Day 3 and FEV<sub>1 </sub>area under the curve from 0 to 4 h post-dose on Day 1. Analysis of covariance was performed for NO and FEV<sub>1 </sub>and analysis of variance for AMP challenge.</p> <p>Results</p> <p>Eighteen patients were randomised and completed the study. Exhaled NO was significantly lower for both doses of extrafine BDP/F versus placebo at 2 and 4 hours (high dose LS mean difference: -22.5 ppb, p < 0.0001 and -20.5 ppb, p < 0.0001; low dose: -14.1 ppb, p = 0.0006 and -12.1 ppb, p = 0.0043) with a significant dose response (p = 0.0342 and p = 0.0423). Likewise, AMP challenge revealed statistically significant differences between both doses of extrafine BDP/F and placebo (high dose LS mean difference: 4.8 mg/mL, p < 0.0001; low dose: 3.7 mg/mL, p < 0.0001), and a significant dose response (p = 0.0185). FEV<sub>1 </sub>was significantly improved versus placebo for both doses (high dose LS mean difference: 0.2 L, p = 0.0001; low dose: 0.2 L p = 0.0001), but without a significant dose response.</p> <p>Conclusions</p> <p>The fixed combination inhaler of extrafine BDP/F has early dose-dependent anti-inflammatory effects with a rapid onset of bronchodilatation in mild asthmatic patients.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01343745">NCT01343745</a></p

    An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup

    Get PDF
    © 2019 American Society for Clinical Investigation. All rights reserved. BACKGROUND. Chronic obstructive pulmonary disease (COPD) is a heterogeneous smoking-related disease characterized by airway obstruction and inflammation. This inflammation may persist even after smoking cessation and responds variably to corticosteroids. Personalizing treatment to biologically similar "molecular phenotypes" may improve therapeutic efficacy in COPD. IL-17A is involved in neutrophilic inflammation and corticosteroid resistance, and thus may be particularly important in a COPD molecular phenotype. METHODS. We generated a gene expression signature of IL-17A response in bronchial airway epithelial brushings from smokers with and without COPD (n = 238), and validated it using data from 2 randomized trials of IL-17 blockade in psoriasis. This IL-17 signature was related to clinical and pathologic characteristics in 2 additional human studies of COPD: (a) SPIROMICS (n = 47), which included former and current smokers with COPD, and (b) GLUCOLD (n = 79), in which COPD participants were randomized to placebo or corticosteroids. RESULTS. The IL-17 signature was associated with an inflammatory profile characteristic of an IL-17 response, including increased airway neutrophils and macrophages. In SPIROMICS the signature was associated with increased airway obstruction and functional small airways disease on quantitative chest CT. In GLUCOLD the signature was associated with decreased response to corticosteroids, irrespective of airway eosinophilic or type 2 inflammation. CONCLUSION. These data suggest that a gene signature of IL-17 airway epithelial response distinguishes a biologically, radiographically, and clinically distinct COPD subgroup that may benefit from personalized therapy

    Quantitative proteomic analysis of age-related subventricular zone proteins associated with neurodegenerative disease.

    Get PDF
    Aging is characterized by a progressive decline in the function of adult tissues which can lead to neurodegenerative disorders. However, little is known about the correlation between protein changes in the subventricular zone (SVZ) and neurodegenerative diseases with age. In the present study, neural stem cells (NSCs) were derived from the SVZ on postnatal 7 d, 1 m, and 12 m-old mice. With age, NSCs exhibited increased SA-β-gal activity and decreased proliferation and pool size in the SVZ zone, and were associated with elevated inflammatory chemokines and cytokines. Furthermore, quantitative proteomics and ingenuity pathway analysis were used to evaluate the significant age-related alterations in proteins and their functions. Some downregulated proteins such as DPYSL2, TPI1, ALDH, and UCHL1 were found to play critical roles in the neurological disease and PSMA1, PSMA3, PSMC2, PSMD11, and UCHL1 in protein homeostasis. Taken together, we have provided valuable insight into the cellular and molecular processes that underlie aging-associated declines in SVZ neurogenesis for the early detection of differences in gene expression and the potential risk of neurological disease, which is beneficial in the prevention of the diseases

    Genetic Associations and Architecture of Asthma-COPD Overlap

    Get PDF
    BACKGROUND: Some people have characteristics of both asthma and COPD (asthma-COPD overlap), and evidence suggests they experience worse outcomes than those with either condition alone. RESEARCH QUESTION: What is the genetic architecture of asthma-COPD overlap, and do the determinants of risk for asthma-COPD overlap differ from those for COPD or asthma? STUDY DESIGN AND METHODS: We conducted a genome-wide association study in 8,068 asthma-COPD overlap case subjects and 40,360 control subjects without asthma or COPD of European ancestry in UK Biobank (stage 1). We followed up promising signals (P < 5 × 10-6) that remained associated in analyses comparing (1) asthma-COPD overlap vs asthma-only control subjects, and (2) asthma-COPD overlap vs COPD-only control subjects. These variants were analyzed in 12 independent cohorts (stage 2). RESULTS: We selected 31 independent variants for further investigation in stage 2, and discovered eight novel signals (P < 5 × 10-8) for asthma-COPD overlap (meta-analysis of stage 1 and 2 studies). These signals suggest a spectrum of shared genetic influences, some predominantly influencing asthma (FAM105A, GLB1, PHB, TSLP), others predominantly influencing fixed airflow obstruction (IL17RD, C5orf56, HLA-DQB1). One intergenic signal on chromosome 5 had not been previously associated with asthma, COPD, or lung function. Subgroup analyses suggested that associations at these eight signals were not driven by smoking or age at asthma diagnosis, and in phenome-wide scans, eosinophil counts, atopy, and asthma traits were prominent. INTERPRETATION: We identified eight signals for asthma-COPD overlap, which may represent loci that predispose to type 2 inflammation, and serious long-term consequences of asthma

    Chronic lung diseases are associated with gene expression programs favoring SARS-CoV-2 entry and severity

    Get PDF
    Patients with chronic lung disease (CLD) have an increased risk for severe coronavirus disease-19 (COVID-19) and poor outcomes. Here, we analyze the transcriptomes of 611,398 single cells isolated from healthy and CLD lungs to identify molecular characteristics of lung cells that may account for worse COVID-19 outcomes in patients with chronic lung diseases. We observe a similar cellular distribution and relative expression of SARS-CoV-2 entry factors in control and CLD lungs. CLD AT2 cells express higher levels of genes linked directly to the efficiency of viral replication and the innate immune response. Additionally, we identify basal differences in inflammatory gene expression programs that highlight how CLD alters the inflammatory microenvironment encountered upon viral exposure to the peripheral lung. Our study indicates that CLD is accompanied by changes in cell-type-specific gene expression programs that prime the lung epithelium for and influence the innate and adaptive immune responses to SARS-CoV-2 infection

    Analysis of the putative role of CR1 in Alzheimer’s disease: Genetic association, expression and function

    Get PDF
    Chronic activation of the complement system and induced inflammation are associated with neuropathology in Alzheimer's disease (AD). Recent large genome wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) in the C3b/C4b receptor (CR1 or CD35) that are associated with late onset AD. Here, anti-CR1 antibodies (Abs) directed against different epitopes of the receptor, were used to localize CR1 in brain, and relative binding affinities of the CR1 ligands, C1q and C3b, were assessed by ELISA. Most Abs tested stained red blood cells in blood vessels but showed no staining in brain parenchyma. However, two monoclonal anti-CR1 Abs labeled astrocytes in all of the cases tested, and this reactivity was preabsorbed by purified recombinant human CR1. Human brain-derived astrocyte cultures were also reactive with both mAbs. The amount of astrocyte staining varied among the samples, but no consistent difference was conferred by diagnosis or the GWAS-identified SNPs rs4844609 or rs6656401. Plasma levels of soluble CR1 did not correlate with diagnosis but a slight increase was observed with rs4844609 and rs6656401 SNP. There was also a modest but statistically significant increase in relative binding activity of C1q to CR1 with the rs4844609 SNP compared to CR1 without the SNP, and of C3b to CR1 in the CR1 genotypes containing the rs6656401 SNP (also associated with the larger isoform of CR1) regardless of clinical diagnosis. These results suggest that it is unlikely that astrocyte CR1 expression levels or C1q or C3b binding activity are the cause of the GWAS identified association of CR1 variants with AD. Further careful functional studies are needed to determine if the variant-dictated number of CR1 expressed on red blood cells contributes to the role of this receptor in the progression of AD, or if another mechanism is involved

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
    corecore