197 research outputs found
Performance of chemically modified reduced graphene oxide (CMrGO) in electrodynamic dust shield (EDS) applications
Electrodynamic Dust Shield (EDS) technology is a dust mitigation strategy
that is commonly studied for applications such as photovoltaics or thermal
radiators where soiling of the surfaces can reduce performance. The goal of the
current work was to test the performance of a patterned nanocomposite EDS
system produced through spray-coating and melt infiltration of chemically
modified reduced graphene oxide (CMrGO) traces with thermoplastic high-density
polyethylene (HDPE). The EDS performance was tested for a dusting of lunar
regolith simulant under high vacuum conditions (~10-6 Torr) using both 2-phase
and 3-phase configurations. Uncapped (bare) devices showed efficient dust
removal at moderate voltages (1000 V) for both 2-phase and 3-phase designs, but
the performance of the devices degraded after several sequential tests due to
erosion of the traces caused by electric discharges. Further tests carried out
while illuminating the dust surface with a UV excimer lamp showed that the EDS
voltage needed to reach the maximum cleanliness was reduced by almost 50% for
the 2-phase devices (500 V minimum for rough and 1000 V for smooth), while the
3-phase devices were unaffected by the application of UV. Capping the CMrGO
traces with low-density polyethylene (LDPE) eliminated breakdown of the
materials and device degradation, but larger voltages (3000 V) coupled with UV
illumination were required to remove the grains from the capped devices.Comment: 22 pages, 7 figure
Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes
The human salivary amylase genes display extensive copy number variation (CNV), and recent work has implicated this variation in adaptation to starch-rich diets, and in association with body mass index. In this work, we use paralogue ratio tests, microsatellite analysis, read depth and fibre-FISH to demonstrate that human amylase CNV is not a smooth continuum, but is instead partitioned into distinct haplotype classes. There is a fundamental structural distinction between haplotypes containing odd or even numbers of AMY1 gene units, in turn coupled to CNV in pancreatic amylase genes AMY2A and AMY2B. Most haplotypes have one copy each of AMY2A and AMY2B and contain an odd number of copies of AMY1; consequently, most individuals have an even total number of AMY1. In contrast, haplotypes carrying an even number of AMY1 genes have rearrangements leading to CNVs ofAMY2A/AMY2B. Read-depth and experimental data showthat different populations harbour different proportions of these basic haplotype classes. In Europeans, the copy numbers of AMY1 and AMY2A are correlated, so that phenotypic associations caused by variation in pancreatic amylase copy number could be detected indirectly as weak association with AMY1 copy number.We showthat the quantitative polymerase chain reaction (qPCR) assay previously applied to the high-throughput measurement of AMY1 copy number is less accurate than the measures we use and that qPCR data in other studies have been further compromised by systematic miscalibration. Our results uncover new patterns in human amylase variation and imply a potential role for AMY2 CNV in functional associations
Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds
The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting
Erythromycin lacks colon prokinetic effect in children with functional gastrointestinal disorders: a retrospective study
<p>Abstract</p> <p>Background</p> <p>Motilin, a peptide hormone has a direct excitatory effect on circular smooth muscle strips derived from the human colon. Reduced plasma motilin concentration has been reported in adults with chronic constipation. Erythromycin, a non-peptide motilin receptor agonist, induces phase 3 of the migrating motor complex (MMC) in the antro-duodenum and also reduces oro-cecal transit time. A pediatric study has reported an improvement in clinical symptoms of constipation following erythromycin administration, but the effect on colon motility in children has not been formally evaluated. We used colon manometry to study the effect of intravenous erythromycin lactobionate at 1 mg/kg on colon motiltiy in ten children.</p> <p>Methods</p> <p>We selected patients with normal antroduodenal and colon manometry studies that were performed simultaneously. All studies were performed for clinically indicated reasons. We quantified the effect of erythromycin on colon contraction by calculating the area under the curve (AUC).</p> <p>Results</p> <p>The mean (SE of mean) AUC in the colon during the fasting, post-erythromycin and postprandial phases of the study was 2.1 mmHg/sec (0.35), 0.99 mmHg/sec (0.17) and 3.05 mmHg/sec (0.70) respectively. The AUC following erythromycin was significantly less compared to the fasting phase of the study (p < 0.01).</p> <p>Conclusion</p> <p>Erythromycin lacks colon prokinetic effect in children with chronic constipation evaluated by colon manometry.</p
Selection of Resistant Bacteria at Very Low Antibiotic Concentrations
The widespread use of antibiotics is selecting for a variety of resistance mechanisms that seriously challenge our ability to treat bacterial infections. Resistant bacteria can be selected at the high concentrations of antibiotics used therapeutically, but what role the much lower antibiotic concentrations present in many environments plays in selection remains largely unclear. Here we show using highly sensitive competition experiments that selection of resistant bacteria occurs at extremely low antibiotic concentrations. Thus, for three clinically important antibiotics, drug concentrations up to several hundred-fold below the minimal inhibitory concentration of susceptible bacteria could enrich for resistant bacteria, even when present at a very low initial fraction. We also show that de novo mutants can be selected at sub-MIC concentrations of antibiotics, and we provide a mathematical model predicting how rapidly such mutants would take over in a susceptible population. These results add another dimension to the evolution of resistance and suggest that the low antibiotic concentrations found in many natural environments are important for enrichment and maintenance of resistance in bacterial populations
High-Level Expression of Notch1 Increased the Risk of Metastasis in T1 Stage Clear Cell Renal Cell Carcinoma
Background: Although metastasis of clear cell renal cell carcinoma (ccRCC) is basically observed in late stage tumors, T1 stage metastasis of ccRCC can also be found with no definite molecular cause resulting inappropriate selection of surgery method and poor prognosis. Notch signaling is a conserved, widely expressed signal pathway that mediates various cellular processes in normal development and tumorigenesis. This study aims to explore the potential role and mechanism of Notch signaling in the metastasis of T1 stage ccRCC. Methodology/Principal Findings: The expression of Notch1 and Jagged1 were analyzed in tumor tissues and matched normal adjacent tissues obtained from 51 ccRCC patients. Compared to non-tumor tissues, Notch1 and Jagged1 expression was significantly elevated both in mRNA and protein levels in tumors. Tissue samples of localized and metastatic tumors were divided into three groups based on their tumor stages and the relative mRNA expression of Notch1 and Jagged1 were analyzed. Compared to localized tumors, Notch1 expression was significantly elevated in metastatic tumors in T1 stage while Jagged1 expression was not statistically different between localized and metastatic tumors of all stages. The average size of metastatic tumors was significantly larger than localized tumors in T1 stage ccRCC and the elevated expression of Notch1 was significantly positive correlated with the tumor diameter. The functional significance of Notch signaling was studied by transfection of 786-O, Caki-1 and HKC cell lines with full-length expression plasmids of Notch1 and Jagged1
- …