45 research outputs found

    Common themes in centriole and centrosome movements.

    Get PDF
    addresses: School of Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.Copyright © 2011 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Trends in Cell Biology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Trends in Cell Biology, 2011, Vol. 21, Issue 1, pp. 57 – 66 DOI: 10.1016/j.tcb.2010.09.004Centrioles are found in nearly all eukaryotic cells and are required for growth and maintenance of the radial array of microtubules, the mitotic spindle, and cilia and flagella. Different types of microtubule structures are often required at different places in a given cell; centrioles must move around to nucleate these varied structures. Here, we draw together recent data on diverse centriole movements to decipher common themes in how centrioles move. Par proteins establish and maintain the required cellular asymmetry. The actin cytoskeleton facilitates movement of multiple basal bodies. Microtubule forces acting on the cell cortex, and nuclear-cytoskeletal links, are important for positioning individual centrosomes, and during cell division. Knowledge of these common mechanisms can inform the study of centriole movements across biology

    Harmonizing methods for wildlife abundance estimation and pathogen detection in Europe-a questionnaire survey on three selected host-pathogen combinations

    Get PDF
    __Background:__ The need for wildlife health surveillance as part of disease control in wildlife, domestic animals and humans on the global level is widely recognized. However, the objectives, methods and intensity of existing wildlife health surveillance programs vary greatly among European countries, resulting in a patchwork of data that are difficult to merge and compare. This survey aimed at evaluating the need and potential for data harmonization in wildlife health in Europe. The specific objective was to collect information on methods currently used to estimate host abundance and pathogen prevalence. Questionnaires were designed t

    Predator traits determine food-web architecture across ecosystems

    Get PDF
    Predator–prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator–prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator–prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems

    A new structural element containing glycine-rich proteins and rhamnogalacturonan I in the protoxylem of seed plants

    Get PDF
    The water pipes of elongating plant organs are the result of programmed cell death and are formed by the walls of dead and empty protoxylem elements. These protoxylem elements are passively elongated many times by the surrounding tissue before they are replaced and collapse. Well-known adaptations for this unique task include the characteristic secondary wall thickenings, forming rings and helices. A new, clearly distinct structural element containing glycine-rich proteins is now visualized for the first time, using confocal laser scanning microscopy in the mature protoxylem of elongating organs of seed plants. This structural element is arranged along the longitudinal axis of the protoxylem elements. It interconnects the secondary wall thickenings within and between protoxylem elements, as well as the protoxylem with other cell types such as xylem parenchyma cells and metaxylem elements. The structural element is stable against detergent extractions, proteinase, pectinase and cellulase hydrolysis, and is closely associated with rhamnogalacturonan-I, a pectic polysaccharide. The results clearly demonstrate that the cell wall of protoxylem cells is a highly dynamic and complex structure. The typical polysaccharide-rich primary wall of living and elongating plant cells is progressively modified and finally replaced by a protein-rich wall in the dead and passively stretched protoxylem elements. These glycine-rich walls originated early in the evolution of the seed plants as confirmed by the analysis of genomic information
    corecore