
 1

Common Themes in Centriole and Centrosome Movements 1 

 2 

Sue Vaughan1 and Helen R. Dawe2 3 

 4 

 5 

1 School of Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK 6 

2 Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker 7 

Road, Exeter, EX4 4QD, UK 8 

 9 

Corresponding author: Dawe, H. R. (h.r.dawe@exeter.ac.uk)10 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/18460335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

Abstract 11 

Centrioles are found in nearly all eukaryotic cells and are required for growth and 12 

maintenance of the radial array of microtubules, the mitotic spindle, and cilia and flagella. 13 

Different types of microtubule structures are often required at different places in a given cell; 14 

centrioles must move around to nucleate these varied structures. Here we draw together 15 

recent data on diverse centriole movements to decipher common themes in how centrioles 16 

move. Par proteins establish and maintain the required cellular asymmetry. The actin 17 

cytoskeleton facilitates movement of multiple basal bodies. Microtubule forces acting on the 18 

cell cortex, and nuclear-cytoskeletal links, are important for positioning individual 19 

centrosomes, and during cell division. Knowledge of these common mechanisms can inform 20 

the study of centriole movements across biology. 21 

 22 

Introduction 23 

In metazoan cells the major microtubule organising centre (MTOC) of the cell is the 24 

centrosome (Figure 1 and glossary).  It is composed of a pair of microtubule-based centrioles 25 

surrounded by a pericentriolar matrix (PCM). Centrioles were once thought to be static 26 

organelles located in the centre of the cell, hence their name. In fact, they move around the 27 

cell to fulfil their functions and correct centriole and centrosome positioning is vital for many 28 

biological processes. There are now many examples of centriole/centrosome movements in 29 

various physiological contexts and many different cell types. We will use the term 30 

centrosome in situations where the centriole pair and PCM all move together, and centriole 31 

where only a single centriole moves. Basal body is the term often used for a centriole that 32 

assembles a cilium or flagellum. While many advances have been made over the last few 33 

years in understanding what controls centrosome, centriole and basal body position, often, 34 

these fields are investigated in isolation. If the data from these disparate fields are analysed 35 
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together, it becomes apparent that there are common themes in both the mechanics of 36 

movement and the regulatory mechanisms involved. Here, we first provide a brief overview 37 

of the contexts in which centriole, centrosome and basal body movements are seen, and then 38 

elaborate on how some of the common themes that are emerging across eukaryotic biology 39 

are applied in each case.  40 

 41 

Centrosome location is critical for many biological processes (Figure 2-4) and also impacts 42 

the position of other organelles. The centrosome and the nucleus are closely associated, and 43 

the Golgi apparatus is also found near the centrosome [1] enabling polarization of membrane 44 

trafficking and secretory machineries [2-3].While centrosomes are not absolutely required to 45 

organise the mitotic spindle [4-6], their position is important in symmetric and asymmetric 46 

cell divisions (Figure 3) as movement of the two centrosomes to opposite sides of the nucleus 47 

defines both the axis of division, and spindle position. In Caenorhabditis elegans, centrosome 48 

positioning is key to the polarity establishment required during asymmetric cell divisions and 49 

defines the anterior-posterior axis of the embryo [7]. The African trypanosome does not use 50 

its centrioles (located at the base of the flagellum and termed basal bodies) to organise the 51 

mitotic spindle; however, basal body positioning and segregation control cell morphogenesis 52 

by influencing cytoskeletal construction and directly positioning the kinetoplast 53 

(mitochondrial genome) [8] (Figure 3).  54 

 55 

Centriole/centrosome position also contributes to the spatial organisation of many cells in 56 

G1/interphase. In the biflagellate green alga Chlamydomonas reinhardtii 57 

centriole/centrosome position maintains overall cell geometry [9], and in metazoans it 58 

organises the radial microtubule array during interphase (Figure 2). In many types of 59 

migrating cells, centrosome position between the nucleus and the leading edge is key to 60 
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migration [10-13]. Formation of the specialised immunological and virological synapses 61 

involves centrosome re-orientation. During immunological synapse formation, the 62 

centrosome migrates to the contact site between the T-cell and the antigen presenting cell 63 

(Figure 4), where, in cytotoxic T-cells, it is involved in directed secretion of lytic granules 64 

[14]. During virological synapse formation, which mediates the cell-cell transfer of viral 65 

particles between an infected cell and a target cell, the centrosome of the infected cell 66 

likewise re-orients towards the site of contact between the cells [15]. Finally, while centrioles 67 

are not absolutely essential for cell division [16], they are critical for ciliogenesis. Humans 68 

build motile and sensory cilia, and ciliogenesis of both kinds requires centriole/basal body 69 

movement to the cell surface [17] (Figures 2 and 4). Most branches of the tree of life are 70 

ciliate, and in many cases failure to build a cilium is incompatible with life. Even in 71 

Drosophila, which can develop without centrioles, death eventually occurs due to the lack of 72 

cilia on sensory neurons [16]. 73 

 74 

Thus, there is a considerable diversity of centriole/centrosome movements in biology. All of 75 

the studied mechanisms of centriole movement require the actin or microtubule 76 

cytoskeletons, or both. Are there common mechanisms that apply across these varied 77 

processes or are there specialised mechanisms to facilitate movement in each physiological 78 

context? 79 

 80 

The microtubule cytoskeleton and centriole movement 81 

The position of the centrosome in both migrating and non-migrating interphase cells requires 82 

a polarised radial microtubule array [18-19]. During cell migration, centrosome position is 83 

actin-independent [10, 12], while the cortical pool of the microtubule minus-end directed 84 

motor cytoplasmic dynein is implicated in centrosome position in several different cell types 85 
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[10, 12-13, 20]. During astrocyte migration, the small GTPase Cdc42 controls centrosome 86 

and Golgi re-orientation towards the direction of migration through the microtubule 87 

cytoskeleton and cytoplasmic dynein [10, 21]; however, in fibroblasts, the centrosome 88 

remains at the cell centre while the nucleus moves rearward [20]. Nonetheless, centrosome 89 

maintenance at this position is dependent on microtubules and dynein as inhibition of either 90 

causes a rearward centrosome displacement [20]. 91 

 92 

Microtubules and cytoplasmic dynein are also implicated in centrosome positioning in non-93 

migrating cells [19, 22-24], suggesting that, when the centrosome needs to be central within 94 

the cell, its position is actively maintained using microtubules and dynein to stabilise the 95 

centrosome-associated microtubule array. In interphase cells, the centriole pair do not 96 

necessarily remain together.  The older, mature, centriole can remain stationary while the 97 

younger, immature centriole moves around the cell [25]. The Rho-associated kinase 98 

p160Rock, is proposed to regulate the central position of the mature centriole [26]. p160Rock 99 

is a major regulator of myosin II but it has many different substrates [27] and during cell 100 

migration it can mediate both microtubule-dependent centrosome re-orientation [28] and 101 

actin rearrangements; consequently, the way in which it affects centrosome position remains 102 

unclear. 103 

 104 

In summary, microtubules and cytoplasmic dynein regulate centrosome position when a 105 

single centrosome needs to be positioned in the centre of the cell. How about when centrioles 106 

need to move away from the centre, or if there are multiple centrioles to move? In these 107 

cases, several studies have highlighted a primary role for the actin cytoskeleton in centriole 108 

positioning. 109 

 110 
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Actin in centrosome/centriole movements 111 

While the first cell division of many organisms is symmetric, that of C. elegans is 112 

asymmetric. During the first division of the C. elegans zygote, the cell divides 113 

asymmetrically along its anterior–posterior axis to give rise to two cells that are committed to 114 

different cell fates. The centriole pair are key factors in the polarity establishment required 115 

during these divisions. They are derived from the sperm cell rather than the oocyte and 116 

become embedded in the actin cortex underlying the plasma membrane by a mechanism that 117 

may not involve interactions with microtubules. RNAi ablation of tubulin does not prevent 118 

polarity establishment and is not required for centriole-cortex interaction [7, 29], suggesting 119 

that another cytoskeletal polymer mediates centriole position. However, another study found 120 

that tubulin disruption delays polarity induction, which requires a small centrosomal 121 

microtubule aster [30]; therefore the precise role of microtubules in this process remains to be 122 

clarified. 123 

 124 

The trachea, oviduct and ependymal epithelium of mammals are composed of a multi-ciliated 125 

epithelium where each cell may have hundreds of cilia, each grown from a basal body. These 126 

form de novo and migrate simultaneously to the apical cell surface. Drugs that target 127 

microtubules do not directly stop basal body movement in oviduct [31], although the 128 

contribution of microtubules to basal body movements in other cell types is unclear. In 129 

contrast, much evidence from several cell types implicates the actin cytoskeleton in basal 130 

body migration and docking at the cell surface. Actin and myosin associate with either basal 131 

bodies, or the material surrounding them [32-34] and basal body migration is blocked by 132 

treatment with inhibitors of actin [35] or myosin [36]. Basal body docking with the cell 133 

membrane is also actin dependent. The Wnt planar cell polarity pathway and its effectors are 134 

implicated in membrane trafficking during ciliogenesis and the formation of an actin array 135 
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essential for basal body docking [37-39] [40]. Finally, myosin II localises to basal body 136 

accessory structures in multi-ciliated epithelia [32], and is needed for basal body migration 137 

[41].  138 

 139 

There are emerging similarities in the structure and function of basal bodies of cilia and 140 

centrioles at the immunological synapse [42], such as the requirement for intraflagellar 141 

transport components. These were previously thought of as cilium assembly and maintenance 142 

proteins [43], but recent data have also demonstrated a role in polarised recycling at the 143 

immunological synapse [44]. This suggests that there may be similar principles guiding 144 

centriole movement and membrane trafficking in both cases. During immunological synapse 145 

formation, receptor-mediated engagement between the immune cell and its target triggers a 146 

transient aggregation of actin across the nascent synapse [45]. The polarisation of the 147 

centriole pair to the synapse is accompanied by concomitant actin clearance from the inner 148 

part of the forming synapse, to produce an outer ring of actin [14, 46] and it has been 149 

suggested that the forces generated by actin clearance are used to move the centrioles forward 150 

[2].Centrioles are always docked at the centre of the synapse and it is unclear whether this is 151 

due to radial actin reorganisation that localises them to this region by default, or whether 152 

there are other actin binding proteins that regulate the site of docking. Much less is known 153 

about the role of the cytoskeleton in virological synapse formation, although it is an actin-154 

dependent process [47] and integrity of both the actin and microtubule cytoskeletons is 155 

crucial [48-49].  156 

 157 

In general it is over-simplistic to consider the actin and microtubule cytoskeletons in 158 

isolation. Extensive cross-talk exists and many biological processes are carried out by actin 159 
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and microtubules acting together. Much research has shown that interactions of microtubules 160 

that are anchored into the actin cortex are often responsible for centriole positioning. 161 

 162 

Microtubule interactions with the actin cortex and centriole and centrosome positioning 163 

 Interaction between microtubules and the actin cytoskeleton at the cell cortex are essential 164 

for maintaining the physical position of the centrosome within the cell and for orchestrating 165 

placement of the duplicated centrosomes during symmetric and asymmetric cell divisions. 166 

Pulling forces of microtubules anchored to the cell cortex provide a mechanism for 167 

centrosome positioning [11, 50].  Studies of male germline stem cells in Drosophila have 168 

revealed differential centrosome behaviour during the asymmetric cell divisions that 169 

characterise development. After centrosome duplication, the older of the two centrosomes 170 

retains a well-defined microtubule array and remains in place, while the younger centrosome 171 

nucleates few microtubules and migrates away to set up the symmetrical plane of the mitotic 172 

spindle [51].  173 

 174 

The pulling forces are provided by dynein on microtubules that extend to and are anchored 175 

into the cell cortex regulated by both dynein and the actin motor myosin II.  Myosin II is one 176 

of several proteins that organise the cortex, and cortical organisation is critical for providing 177 

the mechanical support needed for centrosome positioning. The importance of cortical 178 

rigidity has been highlighted by recent studies that showed that myosin II- and moesin-179 

dependent cortical rigidity are required for spindle positioning [52-54]. Moreover, cell shape 180 

plays an important part in spindle orientation, which is highly dependent on cell-substrate 181 

adhesions [55] that are communicated to the cytoskeleton via integrins and actin-microtubule 182 

linkers including EB1 and myosin X [56-57]. 183 

 184 
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Taken together, these studies provide evidence for a conserved pathway that explains 185 

centrosome movement in cells containing a centralised centrosome with a radial array of 186 

microtubules that are in contact with the plasma membrane. However, not all eukaryotic cells 187 

have a radial array of microtubules emanating from a centralised MTOC. Protists such as the 188 

African trypanosome represent the polar opposite, with microtubules arranged as a 189 

subpellicular sheet underlying the plasma membrane [58]. Basal bodies extend a microtubule 190 

axoneme for the flagellum in this organism, but not a radial array of microtubules within the 191 

cell body. Despite these differences, microtubules do provide the mechanism for basal body 192 

movements and segregation during cell division [59] and these microtubules are closely 193 

associated with the plasma membrane in the same way that microtubules associate with the 194 

actin cortex underlying the plasma membrane in other organisms.  195 

 196 

Thus, the idea that microtubule interactions with a cortical cytoskeleton are used to move 197 

single or paired centrioles/centrosomes is conserved across eukaryotic biology.  198 

 199 

The role of the nuclear envelope in centriole movements. 200 

It is increasingly recognised that the nucleus, as well as the cortex, plays a role in positioning 201 

centrioles. In many cells, the centrioles are tightly associated with the nuclear envelope. This 202 

connection is observed in lower eukaryotes as a physical linkage of striated fibres called the 203 

basal body-nucleus connector (rhizoplast, [60]). During the cell division cycle of 204 

Chlamydomonas, the two flagella are cleaved from the cell. The two pairs of centrioles move 205 

from the apical surface to the poles of the spindle during mitosis, and after division return to 206 

the apical surface and grow two new flagella. The basal body-nucleus connector exists as 207 

striated fibres that connect both pairs of centrioles, which are in turn connected to the nucleus 208 

by centrin-containing rhizoplasts [61]. Is the nucleus, the centriole or both involved in the 209 
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movement to and from the apical surface?  In cells lacking the rhizoplast connection, the 210 

nucleus is mispositioned, but the mature centriole is correctly localised, indicating that 211 

nuclear mis-positioning has little impact on mature centriole positioning [9] and suggesting 212 

that the centriole regulates nuclear positioning rather than vice versa. In a migrating 213 

mammalian cell the opposite appears true. Studies on centrosome reorientation in migrating 214 

fibroblasts suggest that the centrosome might remain relatively central while the nucleus 215 

moves rearwards [20]. Centrosome position is maintained by dynein-mediated cortical 216 

tethering of microtubules [62]; however, it is unclear whether centrosome rotation drives 217 

nuclear movement or vice versa. 218 

 219 

In higher eukaryotes, the link between the nuclear envelope and the centrosome is essential 220 

for development [63] and is robust enough to withstand cell lysis and nuclear isolation [64]. 221 

This linkage is required for nuclear migration and the control of cell cycle timing [64] and in 222 

Drosophila there is evidence that the centrosomes can reach the cell cortex during 223 

development with the aid of the nucleus [65].  224 

 225 

In the organisms studied to date, the centrosome-nucleus linkage is mediated by proteins 226 

containing paired KASH (Klarsicht-anchorage protein1-Syne homology) and SUN (Sad1-227 

UNC84) domains (Figure 5). First discovered in C. elegans, proteins with these domains are 228 

found across eukaryotes and localise to the nuclear envelope and centrosomes [63, 66-68]. 229 

Multiple SUN and KASH proteins exist that provide links between the nuclear envelope and 230 

cytoskeletal polymers [69-70] (Figure 5). One of the diverse roles of the SUN-KASH 231 

complex is the regulation of centrosome position. The C. elegans KASH protein ZYG-12 232 

anchors the centrosome to the nuclear envelope during embryogenesis [63]. ZYG-12 is not 233 

found in mammalian cells; however several proteins fulfill the role of nucleus-centrosome 234 
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linkers including the nuclear membrane protein emerin [71], and the multi-isoform KASH 235 

protein Nesprin 2 [66]. Several Nesprin isoforms contain calponin-homology domains that 236 

allow them to bind actin, and these are implicated in positioning the centrosome during 237 

ciliogenesis of sensory cilia [72], suggesting that actin-dependent nuclear re-positioning or 238 

rotation may re-orient the centrosome apically. A novel epithelial-specific Nesprin isoform, 239 

Nesprin 4, interacts with the microtubule motor kinesin-1, and this link is proposed to 240 

contribute to nucleus and centrosome positioning in interphase cells [73]. It will be 241 

interesting to see if Nesprin 4 and kinesins are also involved in centrosome/centriole 242 

positioning during ciliogenesis as Nesprin-microtubule links are also important in cell 243 

migration. In migrating neurons, a SUN1/2-Nesprin1/2 complex acts with the lissencephaly-244 

associated proteins Lis1 and Doublecortin to couple the centrosome and nucleus through 245 

cytoplasmic dynein [66, 74] 246 

 247 

Regulation of centriole movements 248 

Given that centrioles and centrosomes can track around the nuclear envelope, change their 249 

position relative to the nucleus, embed themselves in the cortex, or move around the cell, how 250 

do they  know where to go? In the absence of other cues, cell-cell contacts are the main 251 

mediators of centrosome positioning [75-76]. The extracellular signals that trigger 252 

centrosome and centriole movements are varied; however there is now much evidence from a 253 

variety of systems that these signals converge on the Par (partitioning) proteins [77] and the 254 

Rho family of small GTPases.  255 

 256 

The Par proteins are a key set of polarity proteins that were identified in screens for mutants 257 

affecting the first asymmetric cell division in C. elegans [78-79]. In both C. elegans and 258 

Drosophila, the Par complex acts through the Rho family of small GTPases and the actin 259 
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cytoskeleton to establish the cortical polarity that is needed for spindle positioning [50, 80]. 260 

Once this initial polarity is established, the same mechanisms act together with microtubule-261 

cortical interactions to produce the forces that result in the asymmetrically placed spindle. 262 

External signalling cues from neighbouring epithelial cells are needed to regulate the 263 

localisation of polarity markers – and hence the axis of the mitotic spindle - during 264 

asymmetric cell division in Drosophila neuroblasts [81]. Two Rho GTPases act together to 265 

regulate polarity establishment in C. elegans. Rho1 mediates the centrosome-dependent 266 

cortical actomyosin rearrangements that lead to contractile asymmetry within the cortex. 267 

Cdc42 mediates the link between the cortex and Par6 proteins, and coordinates Par protein 268 

segregation as the cortical asymmetry develops [80].  During cell migration, integrin 269 

signalling through Cdc42 to Par6 and aPKC is required for the microtubule-dependent 270 

centrosome localisation observed during astrocyte migration [10, 21] and blocking Cdc42 271 

prevents macrophage polarization towards a chemotactic signal [82]. A Par3-Par6-aPKC 272 

complex stabilises microtubule-dependent cell polarity during keratinocyte migration, 273 

although its role in centrosome movement is unclear [83]. During development, aPKC is 274 

needed during neuronal repolarization [84] and Pard3 controls centrosome positioning during 275 

neurulation [85]. During ciliogenesis of multi-ciliated epithelia, the Par3-Par6-aPKC polarity 276 

complex localises to cilia and regulates ciliogenesis via association with kinesin-II [86], one 277 

of the motors required to build cilia by intraflagellar transport [43]. Rho is not needed for 278 

centriole re-orientation during virological synapse formation, however, inhibition of Rac and 279 

Cdc42 prevents centrioles from re-orientating [49]. Cdc42 and Par proteins are also 280 

implicated in immunological synapse formation. Cdc42 inhibition blocks centrosome re-281 

orientation [87], while Par3 is recruited to the synapse [88] and overexpression of a 282 

dominant-negative form of Par1b blocks centrosome re-orientation [89], suggesting that Par3 283 

localisation is functionally relevant to immunological synapse formation. The signalling 284 
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events that regulate the Par proteins in this case are unclear, however strength of signalling 285 

via the T cell receptor is important [90] and when more than one contact is present, the 286 

centrosome can oscillate between the possible targets [91] until the decision is made to kill 287 

the target that produces the strongest signal [92]. It is therefore reasonable to suggest that this 288 

provides the required external cue.  289 

 290 

Concluding remarks 291 

While the importance of the cytoskeleton, polarity proteins, and the nuclear envelope in 292 

centriole movements has long been recognised in several different fields, the idea of common 293 

themes has been slower to emerge. Research carried out over the last few years has 294 

highlighted that, even though centrioles and centrosomes are positioned to achieve very 295 

different outcomes, much of the basic machinery that is used is remarkably similar. It seems 296 

likely that disparate signalling events might converge on the recruitment of the Par proteins to 297 

establish and maintain the asymmetry that is a key feature of these centrosome re-orientation 298 

events. In general, where multiple centrioles need to be moved, there is a requirement for the 299 

actin cytoskeleton, while microtubule forces acting on the cell cortex are particularly 300 

important for positioning individual centrosomes, and during cell division. Finally, the 301 

involvement of KASH proteins in multiple centrosome positioning contexts suggests that 302 

they too may represent a conserved mechanism for regulating centrosome location, and their 303 

potential roles in mediating other centrosome movements warrants investigation. A challenge 304 

for the future is to identify the polarity cues that regulate centrosome position in organisms 305 

outside the metazoa that lack the Par proteins. It will be interesting to see if there are 306 

conserved mechanisms to set up asymmetry in these systems. These might include examples 307 

of cytotaxis such as those that are involved in polarity replication during trypanosome 308 

morphogenesis [93] or the inheritance of cortical organisation in ciliates [94].  309 
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 310 

Several proteins that are implicated in control of centrosome/centriole positioning have been 311 

linked to human inherited disease. Lissencephaly, or “smooth brain,” is a brain malformation 312 

disorder caused by abnormal neuronal migration early in development. Two of the underlying 313 

proteins, Lis1 and Doublecortin, mediate the centrosome-nucleus linkage [74] and it seems 314 

likely that polarity problems caused by disruption of this link might contribute to the disease. 315 

Other neuronal migration disorders can also result in structurally abnormal or missing areas 316 

of the brain including midline defects such as agenesis of the corpus callosum and hypoplasia 317 

of the cerebellar vermis. Many the ciliopathies, or diseases of cilium dysfunction, present 318 

with midline defects as part of the phenotype, and two ciliopathies, Meckel-Gruber syndrome 319 

and hydrolethalus syndrome, have been linked to centrosome/basal body-positioning defects 320 

[95-96]. How these fit in to the pathways and processes described here remains to be seen, 321 

however, the Meckel-Gruber syndrome proteins are implicated in planar cell polarity 322 

signaling [97-98] and may regulate centrosome re-orientation during ciliogenesis through 323 

actin cytoskeleton remodeling and maintaining the centrosome-nuclear envelope connection 324 

[72]. Finally, there are other diseases that have been linked to centrosome dysfunction [99] 325 

and it will be fascinating to discover if centriole/centrosome position is also compromised in 326 

these cases. 327 

 328 

As more details of the molecular control of polarity establishment are uncovered, it will 329 

become possible to understand which of the activities in C. elegans represent general 330 

principles in polarity establishment, and which are specialized to the particular case of 331 

embryonic polarity establishment. Despite the likelihood of cell-type specific specializations, 332 

analysis reveals a commonality in the mechanisms used to move centrioles and centrosomes 333 

throughout eukaryotic biology. Notwithstanding the very different contexts in which centriole 334 
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movements are observed, these commonalities have the potential to contribute to our 335 

understanding of centriole movements in less well-studied systems. 336 

 337 
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 546 
 Figure Legends 547 

Fig 1: Centriole duplication cycle. During interphase/G1 centrioles function in organizing 548 

microtubules, and in many eukaryotic cells the mature centriole assembles a primary 549 

cilium/flagellum. The centriole pair must duplicate only once during the cell cycle and this 550 

begins at the G1/S-phase transition with a pro-centriole assembled orthogonal to each mature 551 

centriole. Recent studies have dissected the molecules required for initial pro-centriole 552 

assembly in C. elegans early embryos and humans (pro-centriole assembly: C. elegans: SPD-553 

2, ZYG-1 Sas-6, Sas-5, Sas-4, α-, β-, and γ-tubulin; Humans: Cep192, Plk4/Sak, Sas-6, Sas-554 

4, CPAP, α-, β-, γ-, δ-, ε-tubulin, CP110, and Cep135. Regulatory molecules: Cdk1/Cyclin B, 555 

Aurora-A, Plks. Control of centriole duplication: Separase, Plk1, Plk4, SAS-6.) [99]. Pro-556 

centriole elongation continues through G2 until there are two pairs of centrioles that migrate 557 

to the pole of the spindle. Following mitosis the tight association and orthogonal orientation 558 

of the mature centriole and pro-centriole is no longer apparent. This is a stage termed 559 

‘disengagement’ and is a crucial stage in the control of centriole duplication [100]. (a) 560 

Microtubule arrays/primary cilium functions. (b) New centriole formation. (c) New centriole 561 
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elongation. (d) Centrosome segregation. (e) Centrosomes move to spindle poles. (f) 562 

Centrosome inheritance to daughter cells. 563 

 564 

Fig 2: Centrosome migration in G1/interphase cells. In many animal cells the centrosome 565 

migrates from a central position within the cell to the cell cortex, where a primary cilium 566 

assembles from the mature centriole. The primary cilium acts as an antenna for the cell that 567 

senses the environment and is needed to transduce certain signaling pathways. Migration of 568 

the centrosome can involve interaction with radial microtubules and actomyosin at the cell 569 

cortex, however, the role of the cortex in primary cilium formation is not known. (a) 570 

G1/interphase cell. The centrosome is located centrally within the cell. Central location is 571 

maintained by microtubules/dynein and regulated by p160Rock. (b) The centrosome moves 572 

to the cell surface in some cell types via interaction of microtubules with the actomyosin cell 573 

cortex. (c) A microtubule-based primary cilium is assembled from the mature centriole. 574 

 575 

Fig 3: Centrosome/basal body migration during cell division. (a). Symmetric & 576 

asymmetric cell division. Migration of the duplicated centrosomes to the opposite poles of the 577 

spindle requires actin-microtubule interactions with the cell cortex (left). The Par proteins are 578 

important in modulating these interactions in order to promote asymmetric positioning 579 

(right). (b). Interphase African trypanosome cell with a single flagellum assembled from the 580 

mature basal body (left). G1/S-phase basal body duplication occurs and a new flagellum 581 

assembles alongside the old flagellum. Migration is microtubule-dependent via subpellicular 582 

microtubules at the cell cortex (middle). Intriguingly, actin and myosin II are not involved in 583 

either basal body migration or cytokinesis in T. brucei (right). (c). Bi-flagellated interphase 584 

C. reinhardtii cell (left). Flagella are cleaved and the centrioles migrate to the poles of the 585 

mitotic spindle via a nucleus-centriole connector (rhizoplast; middle).  Centrioles return to 586 
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the cell cortex and two new flagella are assembled for each daughter cell prior to cytokinesis 587 

(right). 588 

 589 

Fig. 4: Centriole/basal body migration in terminally differentiated cells. (a). The process 590 

of ciliogenesis produces thousands of motile or immotile cilia on many specialized terminally 591 

differentiated cells. Large numbers of basal bodies are formed within a single cell (left). 592 

Basal bodies migrate and dock with the cell membrane. Movement requires actomyosin, and 593 

is regulated by GTPase RhoA (middle). Motile or immotile cilia are assembled from the 594 

docked basal bodies (right). Basal bodies form via a combination of the centriolar and 595 

acentriolar pathways (see text box). The role of the existing centrosome is unknown (b). 596 

Cytotoxic T-cells form an immunological synapse to facilitate killing a target cell. 597 

Centrosome migration is required during the early stages of synapse formation and occurs by 598 

interactions between microtubules and the cell cortex. Recognition of a target cell by a 599 

cytotoxic T-cell and assembly of the synapse (left; arrow points to nascent synapse). 600 

Movement of the centrosome to the synapse requires both microtubules and actomyosin 601 

(middle). The centrosome docks at the plasma membrane of the immunological synapse and 602 

lytic granules (black) travel along microtubules to the synapse to kill the target cell (right). 603 

 604 

Fig 5: SUN and KASH domain proteins couple the nucleus to the actin and microtubule 605 

cytoskeletons. The SUN domain-KASH domain interaction occurs within the space between 606 

the inner and outer nuclear membranes. Many different KASH-domain proteins exist and can 607 

provide a physical linkage between the nuclear lamina and the cytoskeleton. KASH proteins 608 

with an N-terminal actin-binding domain link the actin cytoskeleton to the nucleus. Other 609 

KASH proteins link microtubules to the nucleus via interactions with kinesin or dynein.  The 610 
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SUN-KASH interaction is evolutionarily conserved and  ha many roles within cells, 611 

including nuclear migration and centrosome orientation.  612 

 613 

Figure I 614 

Transmission electron micrograph of a centriole pair from a mouse kidney cell. Scale bar: 615 

100nm. 616 

 617 

Glossary: 618 

Actin motors: myosins are actin motors that carry cargo along actin and are ATP-dependent. 619 

With the exception of myosin VI all other myosins studied to date are plus-end directed. 620 

Astral microtubules: extend out from each centrosome at opposite poles of the mitotic 621 

spindle pole to the cell cortex and are required for mitotic spindle orientation. 622 

Basal body: a microtubule organizing centre that subtends a cilium or flagellum. 623 

Cell cortex: a specialized area of the cell underlying the plasma membrane that is required 624 

for mechanical support of cell shape and form. Microtubules (called cortical microtubules), 625 

actin (called cortical actin) or both are found at the cell cortex in a wide range of eukaryotic 626 

cells. 627 

Centriole: a microtubule-based barrel-shaped structure generally composed of 9 triplet 628 

microtubules that is found in many cells (Figure I). 629 

Centrosome: the major microtubule organizing centre in mammalian cells. It organizes 630 

radial arrays of microtubules, mitotic spindle microtubules and astral microtubules, and 631 

contains a pair of centrioles. 632 

Immunological/Virological synapse: named for their similarity to classical neurological 633 

synapses, the immunological synapse is the interface between an antigen-presenting cell and 634 
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a lymphocyte, while the virological synapse is the interface between infected cells and target 635 

cells that can mediate cell-cell spread of viruses. 636 

Microtubule motors: kinesin motors move along microtubules towards the plus-end of 637 

microtubules and dynein motors move towards the minus-end of microtubules. Both are 638 

ATP-dependent motors. 639 

Pericentriolar material: the matrix that surrounds the centrioles within the centrosome. It 640 

contains proteins responsible for microtubule nucleation and anchoring and plays a role in 641 

centrosome duplication. 642 

 643 

Box 1.  Basal body production during ciliogenesis 644 

Many metazoan organisms build two types of cilium: non-motile sensory, or primary, cilia 645 

and motile cilia. Each assembles from a basal body, which is analogous to the mitotic 646 

centrioles. 647 

 648 

 Primary cilia are solitary organelles that assemble from a basal body derived from the 649 

pre-existing mature centriole, which moves to the cell surface and docks before extending 650 

the ciliary axoneme.  651 

 652 

In contrast, there can be hundreds of motile cilia on a single cell and each needs a basal body. 653 

Basal body formation is linked to differentiation rather than proliferation and multiple basal 654 

bodies are formed in the cytoplasm and then simultaneously migrate to the cell surface. Basal 655 

bodies are formed de novo by a combination of the centriolar pathway and the acentriolar 656 

pathway, both of which can occur in a single cell.  657 
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 In the centriolar pathway, new basal bodies are produced around an existing centriole 658 

template, just as observed during cell cycle-dependent centriole duplication. However, 659 

more than one new basal body can form around a single centriole. 660 

 In the acentriolar pathway, basal body formation is not templated. Here, multiple basal 661 

bodies form around an intermediary structure called a deuterosome rather than around an 662 

existing centriole. 663 

 664 
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