97 research outputs found

    Chinese herbal injections in combination with radiotherapy for advanced pancreatic cancer: A systematic review and network meta-analysis.

    Get PDF
    Advanced pancreatic cancer (APC) is a fatal disease with limited treatment options. This study aims to evaluate the effectiveness and safety of different Chinese herbal injections (CHIs) as adjuvants for radiotherapy (RT) in APC and compare their treatment potentials using network meta-analysis. We systematically searched three English and four Chinese databases for randomized controlled trials (RCTs) from inception to July 25, 2023. The primary outcome was the objective response rate (ORR). Secondary outcomes included Karnofsky performance status (KPS) score, overall survival (OS), and adverse events (AEs). The treatment potentials of different CHIs were ranked using the surface under the cumulative ranking curve (SUCRA). The Cochrane RoB 2 tool and CINeMA were used for quality assessment and evidence grading. Eighteen RCTs involving 1199 patients were included. Five CHIs were evaluated. Compound Kushen injection (CKI) combined with RT significantly improved ORR compared to RT alone (RR 1.49, 95 % CrI 1.21-1.86). Kanglaite (KLT) plus RT (RR 1.58, 95 % CrI 1.20-2.16) and CKI plus RT (RR 1.49, 95 % CrI 1.16-1.95) were associated with improved KPS score compared to radiation monotherapy, with KLT+RT being the highest rank (SUCRA 72.28 %). Regarding AEs, CKI plus RT was the most favorable in reducing the incidence of leukopenia (SUCRA 90.37 %) and nausea/vomiting (SUCRA 85.79 %). CKI may be the optimal choice of CHIs to combine with RT for APC as it may improve clinical response, quality of life, and reduce AEs. High-quality trials are necessary to establish a robust body of evidence. PROSPERO, CRD42023396828. [Abstract copyright: © 2023 Korea Institute of Oriental Medicine. Published by Elsevier B.V.

    Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Drosophila albomicans </it>is a unique model organism for studying both sex chromosome and B chromosome evolution. A pair of its autosomes comprising roughly 40% of the whole genome has fused to the ancient X and Y chromosomes only about 0.12 million years ago, thereby creating the youngest and most gene-rich neo-sex system reported to date. This species also possesses recently derived B chromosomes that show non-Mendelian inheritance and significantly influence fertility.</p> <p>Methods</p> <p>We sequenced male flies with B chromosomes at 124.5-fold genome coverage using next-generation sequencing. To characterize neo-Y specific changes and B chromosome sequences, we also sequenced inbred female flies derived from the same strain but without B's at 28.5-fold.</p> <p>Results</p> <p>We assembled a female genome and placed 53% of the sequence and 85% of the annotated proteins into specific chromosomes, by comparison with the 12 <it>Drosophila genomes</it>. Despite its very recent origin, the non-recombining neo-Y chromosome shows various signs of degeneration, including a significant enrichment of non-functional genes compared to the neo-X, and an excess of tandem duplications relative to other chromosomes. We also characterized a B-chromosome linked scaffold that contains an actively transcribed unit and shows sequence similarity to the subcentromeric regions of both the ancient X and the neo-X chromosome.</p> <p>Conclusions</p> <p>Our results provide novel insights into the very early stages of sex chromosome evolution and B chromosome origination, and suggest an unprecedented connection between the births of these two systems in <it>D. albomicans</it>.</p

    Dual-comb spectroscopy over 100km open-air path

    Full text link
    Satellite-based greenhouse gases (GHG) sensing technologies play a critical role in the study of global carbon emissions and climate change. However, none of the existing satellite-based GHG sensing technologies can achieve the measurement of broad bandwidth, high temporal-spatial resolution, and high sensitivity at the same time. Recently, dual-comb spectroscopy (DCS) has been proposed as a superior candidate technology for GHG sensing because it can measure broadband spectra with high temporal-spatial resolution and high sensitivity. The main barrier to DCS's display on satellites is its short measurement distance in open air achieved thus far. Prior research has not been able to implement DCS over 20 km of open-air path. Here, by developing a bistatic setup using time-frequency dissemination and high-power optical frequency combs, we have implemented DCS over a 113 km turbulent horizontal open-air path. Our experiment successfully measured GHG with 7 nm spectral bandwidth and a 10 kHz frequency and achieved a CO2 sensing precision of <2 ppm in 5 minutes and <0.6 ppm in 36 minutes. Our results represent a significant step towards advancing the implementation of DCS as a satellite-based technology and improving technologies for GHG monitoringComment: 24 pages, 6 figure

    Genomic and oncogenic preference of HBV integration in hepatocellular carcinoma

    Get PDF
    Hepatitis B virus (HBV) can integrate into the human genome, contributing to genomic instability and hepatocarcinogenesis. Here by conducting high-throughput viral integration detection and RNA sequencing, we identify 4,225 HBV integration events in tumour and adjacent non-tumour samples from 426 patients with HCC. We show that HBV is prone to integrate into rare fragile sites and functional genomic regions including CpG islands. We observe a distinct pattern in the preferential sites of HBV integration between tumour and non-tumour tissues. HBV insertional sites are significantly enriched in the proximity of telomeres in tumours. Recurrent HBV target genes are identified with few that overlap. The overall HBV integration frequency is much higher in tumour genomes of males than in females, with a significant enrichment of integration into chromosome 17. Furthermore, a cirrhosis-dependent HBV integration pattern is observed, affecting distinct targeted genes. Our data suggest that HBV integration has a high potential to drive oncogenic transformation

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF
    corecore