220 research outputs found

    Is a Classical Language Adequate in Assessing the Detectability of the Redshifted 21cm Signal from the Early Universe?

    Full text link
    The classical radiometer equation is commonly used to calculate the detectability of the 21cm emission by diffuse cosmic hydrogen at high redshifts. However, the classical description is only valid in the regime where the occupation number of the photons in phase space is much larger than unity and they collectively behave as a classical electromagnetic field. At redshifts z<20, the spin temperature of the intergalactic gas is dictated by the radiation from galaxies and the brightness temperature of the emitting gas is in the range of mK, independently from the existence of the cosmic microwave background. In regions where the observed brightness temperature of the 21cm signal is smaller than the observed photon energy, of 68/(1+z) mK, the occupation number of the signal photons is smaller than unity. Neverethless, the radiometer equation can still be used in this regime because the weak signal is accompanied by a flood of foreground photons with a high occupation number (involving the synchrotron Galactic emission and the cosmic microwave background). As the signal photons are not individually distinguishable, the combined signal+foreground population of photons has a high occupation number, thus justifying the use of the radiometer equation.Comment: 4 pages, Accepted for publication in JCA

    A systematic approach to the Planck LFI end-to-end test and its application to the DPC Level 1 pipeline

    Full text link
    The Level 1 of the Planck LFI Data Processing Centre (DPC) is devoted to the handling of the scientific and housekeeping telemetry. It is a critical component of the Planck ground segment which has to strictly commit to the project schedule to be ready for the launch and flight operations. In order to guarantee the quality necessary to achieve the objectives of the Planck mission, the design and development of the Level 1 software has followed the ESA Software Engineering Standards. A fundamental step in the software life cycle is the Verification and Validation of the software. The purpose of this work is to show an example of procedures, test development and analysis successfully applied to a key software project of an ESA mission. We present the end-to-end validation tests performed on the Level 1 of the LFI-DPC, by detailing the methods used and the results obtained. Different approaches have been used to test the scientific and housekeeping data processing. Scientific data processing has been tested by injecting signals with known properties directly into the acquisition electronics, in order to generate a test dataset of real telemetry data and reproduce as much as possible nominal conditions. For the HK telemetry processing, validation software have been developed to inject known parameter values into a set of real housekeeping packets and perform a comparison with the corresponding timelines generated by the Level 1. With the proposed validation and verification procedure, where the on-board and ground processing are viewed as a single pipeline, we demonstrated that the scientific and housekeeping processing of the Planck-LFI raw data is correct and meets the project requirements.Comment: 20 pages, 7 figures; this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins

    On the Soft Excess in the X-ray Spectrum of Cir X-1: Revisitation of the Distance to Cir X-1

    Get PDF
    We report on a 300 ks BeppoSAX (0.12-200 keV) observation of Circinus X-1 (Cir X-1) at phases between 0.62 and 0.84 and on a 90 ks BeppoSAX observation of Cir X--1 at phases 0.11-0.16. Using the canonical model adopted until now to fit the energy spectrum of this source large residuals appear below 1 keV. These are well fitted using an equivalent hydrogen column of 0.66×10220.66 \times 10^{22} cm2^{-2}, adding absorption edges of O VII, O VIII and Ne IX in the spectra extracted from the observation at phases 0.62-0.84 and adding absorption edges of O VII, O VIII, Mg XI and Mg XII and absorption lines of O VIII and Mg XII in the spectra extracted from the observation at phases 0.11-0.16. During the observation at phases 0.62--0.84 the electron density associated to the ionized matter is 1013\sim 10^{13} cm3^{-3} remaining quit constant going away from the compact object. During the observation at phases 0.11-0.16 the electron density profile varies along the distance going from 6×1013\sim 6 \times 10^{13} cm3^{-3} at 1011\sim 10^{11} cm to 9×1010\sim 9 \times 10^{10} cm3^{-3} at 1013\sim 10^{13} cm. The equivalent hydrogen column towards Cir X-1 is thre times lower than the value obtained from previous models. This low value would imply that Cir X-1 is at a distance of 4.1 kpc.Comment: 30 pages, 11 figures, accepted by Ap

    Fundamental Properties and Distances of LMC Eclipsing Binaries: III. EROS 1044

    Get PDF
    We present results from a detailed analysis of a third eclipsing binary (EB) system in the Large Magellanic Cloud, EROS 1044 (~B2 IV-V + ~B2 III-IV). Our study combines the "classical" EB study of light and radial velocity curves with detailed modeling of the observed spectral energy distribution, and yields an essentially complete picture of the stellar properties of the system and a determination of its distance. The observational data exploited include optical photometry, space-based UV spectroscopy, and UV/optical spectrophotometry. The advantages of our technique include numerous consistency checks and, in the case of the distance determinations, the absence of zero point uncertainties and adjustable parameters. We find the EROS 1044 system to consist of a pair of normal, mildly-evolved ~21000 K stars, whose derived properties are consistent with stellar evolution calculations. The distance to the system is 47.5+/-1.8 kpc. We discuss the implications of our results for three EB systems (HV 2274, HV 982, and EROS 1044) on the general distance to the Large Magellanic Cloud.Comment: 18 pages, 8 figures, accepted for publication in Ap

    Trends in incidence, mortality and survival in women with breast cancer from 1985 to 2012 in Granada, Spain: a population-based study

    Get PDF
    The incidence of breast cancer has increased since the 1970s. Despite favorable trends in prognosis, the role of changes in clinical practice and the introduction of screening remain controversial. We examined breast cancer trends to shed light on their determinants Overall, age-adjusted (European Standard Population) incidence rates increased from 48.0 cases × 100,000 women in 1985–1989 to 83.4 in 2008–2012, with an annual percentage change (APC) of 2.5% (95%CI, 2.1–2.9) for 1985–2012. The greatest increase was in women younger than 40 years (APC 3.5, 95%CI, 2.4–4.8). For 2000–2012 the incidence trend increased only for stage I tumors (APC 3.8, 95%CI, 1.9–5.8). Overall age-adjusted breast cancer mortality decreased (APC − 1, 95%CI, − 1.4 – − 0.5), as did mortality in the 50–69 year age group (APC − 1.3, 95%CI, − 2.2 – − 0.4). Age-standardized net survival increased from 67.5% at 5 years in 1985–1989 to 83.7% in 2010–2012. All age groups younger than 70 years showed a similar evolution. Five-year net survival rates were 96.6% for patients with tumors diagnosed in stage I, 88.2% for stage II, 62.5% for stage III and 23.3% for stage IV. Breast cancer incidence is increasing – a reflection of the evolution of risk factors and increasing diagnostic pressure. After screening was introduced, the incidence of stage I tumors increased, with no decrease in the incidence of more advanced stages. Reductions were seen for overall mortality and mortality in the 50–69 year age group, but no changes were found after screening implementation. Survival trends have evolved favorably except for the 70–84 year age group and for metastatic tumors.This study was supported by a grant from the Acción Estratégica en Salud plan for the High Resolution Project on Prognosis and Care of Cancer Patients (No. AC14/00036) awarded by the Spanish Ministry of Economy and Competitiveness and co-funded by the European Regional Development Fund (ERDF)

    Radio emission from Supernova Remnants

    Get PDF
    The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analyzing the prospects for future research with the latest generation radio telescopes.Comment: Revised version. 48 pages, 15 figure

    Planck pre-launch status : The Planck mission

    Get PDF
    Peer reviewe

    The Large Observatory for x-ray timing

    Get PDF
    The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study

    The LOFT mission concept: a status update

    Get PDF
    The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission
    corecore