2,098 research outputs found

    Impact of computer experience on the viability and repeatability of the Moorfields Motion Displacement Test (MMDT) in a developing and underserved African setting.

    Get PDF
    Background: The current study was designed to explore the effect of computer experience on the viability and testretest repeatability of the Moorfields Motion Displacement Test (MMDT), a novel computer-driven glaucoma screening device, in an African community setting. Methods: 164 healthy subjects were recruited from a semi-rural Mozambican environment, and stratified according to computer experience (computer naïve: n=85, computer familiar: n=79). A suprathreshold screening test algorithm was employed, and the global probability of true damage (GPTD), testing time (TT) and false positive (FP) response rate were recorded. The visual field test was conducted twice on the same eye, and results compared to determine intra-sessional repeatability. Results: No inter-group differences in GPTD or TT (p\u3e0.05) were observed between computer subgroups, although FP response rate was significantly higher among computer naïve subjects (p=0.00 for both tests). No inter-sessional differences were observed for GPTD, TT and FP (p\u3e0.05 for all) for either subgroup. A statistically significant positive correlation was found between repeat GPTD, TT and FP measures for all subgroups (

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD

    A Computational Assay of Estrogen Receptor alpha Antagonists Reveals the Key Common Structural Traits of Drugs Effectively Fighting Refractory Breast Cancers

    Get PDF
    Somatic mutations of the Estrogen Receptor alpha (ER alpha) occur with an up to 40% incidence in ER sensitive breast cancer (BC) patients undergoing prolonged endocrine treatments. These polymorphisms are implicated in acquired resistance, disease relapse, and increased mortality rates, hence representing a current major clinical challenge. Here, multi-microseconds (12.5 mu s) molecular dynamics simulations revealed that recurrent ER alpha. polymorphisms (i.e. L536Q, Y5375, Y537N, D538G) (mER alpha) are constitutively active in their apo form and that they prompt the selection of an agonist (active)-like conformation even upon antagonists binding. Interestingly, our simulations rationalize, for thefirst time, the efficacy profile of (pre)clinically used Selective Estrogen Receptor Modulators/Downregulators (SERMs/SERDs) against these variants, enlightening, at atomistic level of detail, the key common structural traits needed by drugs able to effectively fight refractory BC types. This knowledge represents a key advancement for mechanism-based therapeutics targeting resistant ER alpha isoforms, potentially allowing the community to move a step closer to 'precision medicine' calibrated on patients' genetic profiles and disease progression

    Search for Charged Higgs Bosons in e+e- Collisions at \sqrt{s} = 189 GeV

    Full text link
    A search for pair-produced charged Higgs bosons is performed with the L3 detector at LEP using data collected at a centre-of-mass energy of 188.6 GeV, corresponding to an integrated luminosity of 176.4 pb^-1. Higgs decays into a charm and a strange quark or into a tau lepton and its associated neutrino are considered. The observed events are consistent with the expectations from Standard Model background processes. A lower limit of 65.5 GeV on the charged Higgs mass is derived at 95 % confidence level, independent of the decay branching ratio Br(H^{+/-} -> tau nu)

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Improved Search for νˉμνˉe\bar ν_μ\rightarrow \bar ν_e Oscillations in the MiniBooNE Experiment

    Get PDF
    Submitted to PRL. Further information provided in arXiv:1207.4809Submitted to PRL. Further information provided in arXiv:1207.4809The MiniBooNE experiment at Fermilab reports results from an analysis of νˉe\bar \nu_e appearance data from 11.27×102011.27 \times 10^{20} protons on target in antineutrino mode, an increase of approximately a factor of two over the previously reported results. An event excess of 78.4±28.578.4 \pm 28.5 events (2.8σ2.8 \sigma) is observed in the energy range 200<EνQE<1250200<E_\nu^{QE}<1250 MeV. If interpreted in a two-neutrino oscillation model, νˉμνˉe\bar{\nu}_{\mu}\rightarrow\bar{\nu}_e, the best oscillation fit to the excess has a probability of 66% while the background-only fit has a χ2\chi^2-probability of 0.5% relative to the best fit. The data are consistent with antineutrino oscillations in the 0.01<Δm2<1.00.01 < \Delta m^2 < 1.0 eV2^2 range and have some overlap with the evidence for antineutrino oscillations from the Liquid Scintillator Neutrino Detector (LSND). All of the major backgrounds are constrained by in-situ event measurements so non-oscillation explanations would need to invoke new anomalous background processes. The neutrino mode running also shows an excess at low energy of 162.0±47.8162.0 \pm 47.8 events (3.4σ3.4 \sigma) but the energy distribution of the excess is marginally compatible with a simple two neutrino oscillation formalism. Expanded models with several sterile neutrinos can reduce the incompatibility by allowing for CP violating effects between neutrino and antineutrino oscillations

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore