232 research outputs found
The rise of \u27women\u27s poetry\u27 in the 1970s an initial survey into new Australian poetry, the women\u27s movement, and a matrix of revolutions
The Human Skeletal Muscle Proteome Project:a reappraisal of the current literature
Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of 'sarcopenia', a condition that impairs mobility, challenges autonomy, and is a risk factor for mortality. The mechanisms leading to sarcopenia as well as myopathies are still little understood. The Human Skeletal Muscle Proteome Project was initiated with the aim to characterize muscle proteins and how they change with ageing and disease. We conducted an extensive review of the literature and analysed publically available protein databases. A systematic search of peer-reviewed studies was performed using PubMed. Search terms included 'human', 'skeletal muscle', 'proteome', 'proteomic(s)', and 'mass spectrometry', 'liquid chromatography-mass spectrometry (LC-MS/MS)'. A catalogue of 5431 non-redundant muscle proteins identified by mass spectrometry-based proteomics from 38 peer-reviewed scientific publications from 2002 to November 2015 was created. We also developed a nosology system for the classification of muscle proteins based on localization and function. Such inventory of proteins should serve as a useful background reference for future research on changes in muscle proteome assessed by quantitative mass spectrometry-based proteomic approaches that occur with ageing and diseases. This classification and compilation of the human skeletal muscle proteome can be used for the identification and quantification of proteins in skeletal muscle to discover new mechanisms for sarcopenia and specific muscle diseases that can be targeted for the prevention and treatment
Reconstruction of 60 Years of Chikungunya Epidemiology in the Philippines Demonstrates Episodic and Focal Transmission.
Proper understanding of the long-term epidemiology of chikungunya has been hampered by poor surveillance. Outbreak years are unpredictable and cases often misdiagnosed. Here we analyzed age-specific data from 2 serological studies (from 1973 and 2012) in Cebu, Philippines, to reconstruct both the annual probability of infection and population-level immunity over a 60-year period (1952-2012). We also explored whether seroconversions during 2012-2013 were spatially clustered. Our models identified 4 discrete outbreaks separated by an average delay of 17 years. On average, 23% (95% confidence interval [CI], 16%-37%) of the susceptible population was infected per outbreak, with >50% of the entire population remaining susceptible at any point. Participants who seroconverted during 2012-2013 were clustered at distances of 350 000 infections were missed by surveillance systems. Serological studies could supplement surveillance to provide important insights on pathogen circulation
Development, validation and testing of an Operational Welfare Score Index for farmed lumpfish Cyclopterus lumpus L
Acute reduction of serum 8-iso-PGF2-alpha and advanced oxidation protein products in vivo by a polyphenol-rich beverage; a pilot clinical study with phytochemical and in vitro antioxidant characterization
<p>Abstract</p> <p>Background</p> <p>Measuring the effects of the acute intake of natural products on human biomarker concentrations, such as those related to oxidation and inflammation, can be an advantageous strategy for early clinical research on an ingredient or product.</p> <p>Methods</p> <p>31 total healthy subjects were randomized in a double-blinded, placebo-controlled, acute pilot study with post-hoc subgroup analysis on 20 of the subjects. The study examined the effects of a single dose of a polyphenol-rich beverage (PRB), commercially marketed as "SoZo<sup>®</sup>", on serum anti-inflammatory and antioxidant markers. In addition, phytochemical analyses of PRB, and <it>in vitro </it>antioxidant capacity were also performed.</p> <p>Results</p> <p>At 1 hour post-intake, serum values for 8-iso-PGF2-alpha and advanced oxidation protein products decreased significantly by 40% and 39%, respectively. Additionally, there was a trend toward decreased C-reactive protein, and increased nitric oxide levels. Both placebo and PRB treatment resulted in statistically significant increases in hydroxyl radical antioxidant capacity (HORAC) compared to baseline; PRB showed a higher percent change (55-75% versus 23-74% in placebo group), but the two groups did not differ significantly from each other.</p> <p>Conclusions</p> <p>PRB produced statistically significant changes in several blood biomarkers related to antioxidant/anti-inflammatory effects. Future studies are justified to verify results and test for cumulative effects of repeated intakes of PRB. The study demonstrates the potential utility of acute biomarker measurements for evaluating antioxidant/anti-inflammatory effects of natural products.</p
The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase
The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033
The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase
The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray
spectrometer, studied since 2015 for flying in the mid-30s on the Athena space
X-ray Observatory, a versatile observatory designed to address the Hot and
Energetic Universe science theme, selected in November 2013 by the Survey
Science Committee. Based on a large format array of Transition Edge Sensors
(TES), it aims to provide spatially resolved X-ray spectroscopy, with a
spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of
5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement
Review (SRR) in June 2022, at about the same time when ESA called for an
overall X-IFU redesign (including the X-IFU cryostat and the cooling chain),
due to an unanticipated cost overrun of Athena. In this paper, after
illustrating the breakthrough capabilities of the X-IFU, we describe the
instrument as presented at its SRR, browsing through all the subsystems and
associated requirements. We then show the instrument budgets, with a particular
emphasis on the anticipated budgets of some of its key performance parameters.
Finally we briefly discuss on the ongoing key technology demonstration
activities, the calibration and the activities foreseen in the X-IFU Instrument
Science Center, and touch on communication and outreach activities, the
consortium organisation, and finally on the life cycle assessment of X-IFU
aiming at minimising the environmental footprint, associated with the
development of the instrument. Thanks to the studies conducted so far on X-IFU,
it is expected that along the design-to-cost exercise requested by ESA, the
X-IFU will maintain flagship capabilities in spatially resolved high resolution
X-ray spectroscopy, enabling most of the original X-IFU related scientific
objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental
Astronomy with minor editin
The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase
Instrumentatio
EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), 2013. Scientific Opinion on the public health hazards to be covered by inspection of meat (bovine animals).
A risk ranking process identified Salmonella spp. and pathogenic verocytotoxin-producing Escherichia coli (VTEC) as current high-priority biological hazards for meat inspection of bovine animals. As these hazards are not detected by traditional meat inspection, a meat safety assurance system for the farm-to-chilled carcass continuum using a risk-based approach was proposed. Key elements of the system are risk-categorisation of slaughter animals for high-priority biological hazards based on improved food chain information, as well as risk-categorisation of slaughterhouses according to their capability to control those hazards. Omission of palpation and incision during post-mortem inspection for animals subjected to routine slaughter may decrease spreading and cross-contamination with the high-priority biological hazards. For chemical hazards, dioxins and dioxin-like polychlorinated biphenyls were ranked as being of high potential concern; all other substances were ranked as of medium or lower concern. Monitoring programmes for chemical hazards should be more flexible and based on the risk of occurrence, taking into account the completeness and quality of the food chain information supplied and the ranking of chemical substances, which should be regularly updated to include new hazards. Control programmes across the food chain, national residue control programmes, feed control and monitoring of environmental contaminants should be better integrated. Meat inspection is a valuable tool for surveillance and monitoring of animal health and welfare conditions. Omission of palpation and incision would reduce detection effectiveness for bovine tuberculosis and would have a negative impact on the overall surveillance system especially in officially tuberculosis free countries. The detection effectiveness for bovine cysticercosis, already low with the current meat inspection system, would result in a further decrease, if palpation and incision are removed. Extended use of food chain information could compensate for some, but not all, the information on animal health and welfare lost if only visual post-mortem inspection is applied
- …
