11 research outputs found

    STRIKE 3000 Electric Trike

    Get PDF
    The Strike 3000 is an electric, three-wheeled vehicle designed to revolutionize the way people travel. This vehicle will be the first of its kind to be designed for operation while standing rather than sitting like all current market designs. It is designed to create a healthier lifestyle to help combat the sedentary lives that many people are being forced to live, to be a comfortable, safe, and affordable mode of transportation for short-distance, everyday travel. It will include several cubic feet of storage space for things like groceries, small packages and other common cargo items. To be up to the leading edge of vehicle technology, this design also use a zero-emissions electric drive system using a 8.1kW LiFePO4 battery and a 10kW brush-less DC motor. The objective of this project is to design, test, and, at least in part, construct the vehicle by May 2017. Unfortunately, construction of the the vehicle was not implemented, but the design for the chassis and roll cage was finalized after consulting the Baja SAE 2017 rules and regulations and the NHTSA safety regulations, which were used as the primary design template along with the project sponsor, Ken Howes for aesthetic preferences. Once that was established, the components of the suspension system were designed based on the dimensions of the chassis. The steering system and the wheel knuckle were simultaneously researched and designed in the same manner. Because of unforeseen hurdles, time constraints, and underestimation of the costs of designing and building a vehicle prototype, other systems and components of the Strike have been re-prioritized and have not be receiving as much attention as it previously had. Instead how to go about continuing the design and build process is detailed in this report to provide constructive suggestions and recommendations to the future design teams of the Strike 3000

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Charged-particle multiplicity distributions over a wide pseudorapidity range in proton-proton collisions at root s=0.9, 7, and 8 TeV

    Get PDF
    We present the charged-particle multiplicity distributions over a wide pseudorapidity range ( 3.4<η<5.0-\,3.4<\eta <5.0 ) for pp collisions at s=0.9,7\sqrt{s}= 0.9, 7 , and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations.We present the charged-particle multiplicity distributions over a wide pseudorapidity range (3.4<η<5.0-3.4<\eta<5.0) for pp collisions at s=\sqrt{s}= 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations

    Charged-particle multiplicity distributions over a wide pseudorapidity range in proton-proton collisions at root s=0.9, 7, and 8 TeV

    Get PDF
    We present the charged-particle multiplicity distributions over a wide pseudorapidity range ( 3.4<η<5.0-\,3.4<\eta <5.0 ) for pp collisions at s=0.9,7\sqrt{s}= 0.9, 7 , and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations.We present the charged-particle multiplicity distributions over a wide pseudorapidity range (3.4<η<5.0-3.4<\eta<5.0) for pp collisions at s=\sqrt{s}= 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations

    Edoxaban versus warfarin in patients with atrial fibrillation

    Get PDF
    Contains fulltext : 125374.pdf (publisher's version ) (Open Access)BACKGROUND: Edoxaban is a direct oral factor Xa inhibitor with proven antithrombotic effects. The long-term efficacy and safety of edoxaban as compared with warfarin in patients with atrial fibrillation is not known. METHODS: We conducted a randomized, double-blind, double-dummy trial comparing two once-daily regimens of edoxaban with warfarin in 21,105 patients with moderate-to-high-risk atrial fibrillation (median follow-up, 2.8 years). The primary efficacy end point was stroke or systemic embolism. Each edoxaban regimen was tested for noninferiority to warfarin during the treatment period. The principal safety end point was major bleeding. RESULTS: The annualized rate of the primary end point during treatment was 1.50% with warfarin (median time in the therapeutic range, 68.4%), as compared with 1.18% with high-dose edoxaban (hazard ratio, 0.79; 97.5% confidence interval [CI], 0.63 to 0.99; P<0.001 for noninferiority) and 1.61% with low-dose edoxaban (hazard ratio, 1.07; 97.5% CI, 0.87 to 1.31; P=0.005 for noninferiority). In the intention-to-treat analysis, there was a trend favoring high-dose edoxaban versus warfarin (hazard ratio, 0.87; 97.5% CI, 0.73 to 1.04; P=0.08) and an unfavorable trend with low-dose edoxaban versus warfarin (hazard ratio, 1.13; 97.5% CI, 0.96 to 1.34; P=0.10). The annualized rate of major bleeding was 3.43% with warfarin versus 2.75% with high-dose edoxaban (hazard ratio, 0.80; 95% CI, 0.71 to 0.91; P<0.001) and 1.61% with low-dose edoxaban (hazard ratio, 0.47; 95% CI, 0.41 to 0.55; P<0.001). The corresponding annualized rates of death from cardiovascular causes were 3.17% versus 2.74% (hazard ratio, 0.86; 95% CI, 0.77 to 0.97; P=0.01), and 2.71% (hazard ratio, 0.85; 95% CI, 0.76 to 0.96; P=0.008), and the corresponding rates of the key secondary end point (a composite of stroke, systemic embolism, or death from cardiovascular causes) were 4.43% versus 3.85% (hazard ratio, 0.87; 95% CI, 0.78 to 0.96; P=0.005), and 4.23% (hazard ratio, 0.95; 95% CI, 0.86 to 1.05; P=0.32). CONCLUSIONS: Both once-daily regimens of edoxaban were noninferior to warfarin with respect to the prevention of stroke or systemic embolism and were associated with significantly lower rates of bleeding and death from cardiovascular causes. (Funded by Daiichi Sankyo Pharma Development; ENGAGE AF-TIMI 48 ClinicalTrials.gov number, NCT00781391.)

    Lipoprotein(a) and Benefit of PCSK9 Inhibition in Patients With Nominally Controlled LDL Cholesterol

    No full text
    Background: Guidelines recommend nonstatin lipid-lowering agents in patients at very high risk for major adverse cardiovascular events (MACE) if low-density lipoprotein cholesterol (LDL-C) remains ≥70 mg/dL on maximum tolerated statin treatment. It is uncertain if this approach benefits patients with LDL-C near 70 mg/dL. Lipoprotein(a) levels may influence residual risk. Objectives: In a post hoc analysis of the ODYSSEY Outcomes (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) trial, the authors evaluated the benefit of adding the proprotein subtilisin/kexin type 9 inhibitor alirocumab to optimized statin treatment in patients with LDL-C levels near 70 mg/dL. Effects were evaluated according to concurrent lipoprotein(a) levels. Methods: ODYSSEY Outcomes compared alirocumab with placebo in 18,924 patients with recent acute coronary syndromes receiving optimized statin treatment. In 4,351 patients (23.0%), screening or randomization LDL-C was 13.7 mg/dL or ≤13.7 mg/dL; corresponding adjusted treatment hazard ratios were 0.82 (95% CI: 0.72-0.92) and 0.89 (95% CI: 0.75-1.06), with Pinteraction = 0.43. Conclusions: In patients with recent acute coronary syndromes and LDL-C near 70 mg/dL on optimized statin therapy, proprotein subtilisin/kexin type 9 inhibition provides incremental clinical benefit only when lipoprotein(a) concentration is at least mildly elevated. (ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; NCT01663402

    Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial

    No full text
    Background: After acute coronary syndrome, diabetes conveys an excess risk of ischaemic cardiovascular events. A reduction in mean LDL cholesterol to 1·4–1·8 mmol/L with ezetimibe or statins reduces cardiovascular events in patients with an acute coronary syndrome and diabetes. However, the efficacy and safety of further reduction in LDL cholesterol with an inhibitor of proprotein convertase subtilisin/kexin type 9 (PCSK9) after acute coronary syndrome is unknown. We aimed to explore this issue in a prespecified analysis of the ODYSSEY OUTCOMES trial of the PCSK9 inhibitor alirocumab, assessing its effects on cardiovascular outcomes by baseline glycaemic status, while also assessing its effects on glycaemic measures including risk of new-onset diabetes. Methods: ODYSSEY OUTCOMES was a randomised, double-blind, placebo-controlled trial, done at 1315 sites in 57 countries, that compared alirocumab with placebo in patients who had been admitted to hospital with an acute coronary syndrome (myocardial infarction or unstable angina) 1–12 months before randomisation and who had raised concentrations of atherogenic lipoproteins despite use of high-intensity statins. Patients were randomly assigned (1:1) to receive alirocumab or placebo every 2 weeks; randomisation was stratified by country and was done centrally with an interactive voice-response or web-response system. Alirocumab was titrated to target LDL cholesterol concentrations of 0·65–1·30 mmol/L. In this prespecified analysis, we investigated the effect of alirocumab on cardiovascular events by glycaemic status at baseline (diabetes, prediabetes, or normoglycaemia)—defined on the basis of patient history, review of medical records, or baseline HbA1c or fasting serum glucose—and risk of new-onset diabetes among those without diabetes at baseline. The primary endpoint was a composite of death from coronary heart disease, non-fatal myocardial infarction, fatal or non-fatal ischaemic stroke, or unstable angina requiring hospital admission. ODYSSEY OUTCOMES is registered with ClinicalTrials.gov, number NCT01663402. Findings: At study baseline, 5444 patients (28·8%) had diabetes, 8246 (43·6%) had prediabetes, and 5234 (27·7%) had normoglycaemia. There were no significant differences across glycaemic categories in median LDL cholesterol at baseline (2·20–2·28 mmol/L), after 4 months' treatment with alirocumab (0·80 mmol/L), or after 4 months' treatment with placebo (2·25–2·28 mmol/L). In the placebo group, the incidence of the primary endpoint over a median of 2·8 years was greater in patients with diabetes (16·4%) than in those with prediabetes (9·2%) or normoglycaemia (8·5%); hazard ratio (HR) for diabetes versus normoglycaemia 2·09 (95% CI 1·78–2·46, p<0·0001) and for diabetes versus prediabetes 1·90 (1·65–2·17, p<0·0001). Alirocumab resulted in similar relative reductions in the incidence of the primary endpoint in each glycaemic category, but a greater absolute reduction in the incidence of the primary endpoint in patients with diabetes (2·3%, 95% CI 0·4 to 4·2) than in those with prediabetes (1·2%, 0·0 to 2·4) or normoglycaemia (1·2%, −0·3 to 2·7; absolute risk reduction pinteraction=0·0019). Among patients without diabetes at baseline, 676 (10·1%) developed diabetes in the placebo group, compared with 648 (9·6%) in the alirocumab group; alirocumab did not increase the risk of new-onset diabetes (HR 1·00, 95% CI 0·89–1·11). HRs were 0·97 (95% CI 0·87–1·09) for patients with prediabetes and 1·30 (95% CI 0·93–1·81) for those with normoglycaemia (pinteraction=0·11). Interpretation: After a recent acute coronary syndrome, alirocumab treatment targeting an LDL cholesterol concentration of 0·65–1·30 mmol/L produced about twice the absolute reduction in cardiovascular events among patients with diabetes as in those without diabetes. Alirocumab treatment did not increase the risk of new-onset diabetes. Funding: Sanofi and Regeneron Pharmaceuticals

    Charged-particle multiplicity distributions over a wide pseudorapidity range in proton-proton collisions at root s=0.9, 7, and 8 TeV

    No full text
    We present the charged-particle multiplicity distributions over a wide pseudorapidity range (-3.4<eta<5.0) for pp collisions at root s = 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations
    corecore