62 research outputs found

    Modelling Random Antibody Adsorption and Immunoassay Activity

    Get PDF
    One of the primary considerations in immunoassay design is optimizing the concentration of capture antibody in order to achieve maximal antigen binding and, subsequently, improved sensitivity and limit of detection. Many immunoassay technologies involve immobilization of the antibody to solid surfaces. Antibodies are large molecules in which the position and accessibility of the antigen-binding site depend on their orientation and packing density. In this paper we propose a simple mathematical model, based on the theory known as random sequential adsorption (RSA), in order to calculate how the concentration of correctly oriented antibodies (active site exposed for subsequent reactions) evolves during the deposition process. It has been suggested by experimental studies that high concentrations will decrease assay performance, due to molecule denaturation and obstruction of active binding sites. However, crowding of antibodies can also have the opposite effect by favouring upright orientations. A specific aim of our model is to predict which of these competing effects prevails under different experimental conditions and study the existence of an optimal coverage, which yields the maximum expected concentration of active particles (and hence the highest signal)

    Direct Immunoassays and Their Performance: Theoretical Modelling of the Effects of Antibody Orientation and Associated Kinetics

    Get PDF
    The orientation and activity of antibodies immobilized on solid surfaces are of direct relevance to many immunosensing applications. We therefore investigate a mathematical model which estimates the fraction of antibodies which are available for reaction in a randomly adsorbed sample. Numerical simulations are presented which highlight the separate effects of antibody orientation, accessibility and loss of binding ability on the amount of captured antigen. The assay response can then be expressed as a function of total antibody density and used for optimizing the surface coverage strategy under various conditions

    Rural Food Pantry Users’ Stigma and Safety Net Food Programs

    Get PDF
    Increasing numbers of individuals in our community have been seeking local food pantry assistance. Previous studies of food pantries found that users show low rates of governmental aid receipt, especially in rural areas. We assessed evidence that suggests that post-recession need has mitigated rural reluctance to pursue government assistance. The inadequacy of government and local food assistance to address the problem of food insecurity in our community is discussed

    How do Antarctic notothenioid fishes cope with internal ice? A novel function for antifreeze glycoproteins

    Get PDF
    Antarctic fishes survive freezing through the secretion of antifreeze glycoproteins (AFGPs), which bind to ice crystals to inhibit their growth. This mode of action implies that ice crystals must be present internally for AFGPs to function. The entry and internal accumulation of ice is likely to be lethal, however, so how do fishes survive in its presence? We propose a novel function for the interaction between internal ice and AFGPs, namely the promotion of ice uptake by splenic phagocytes. We show here that i) external mucus of Antarctic notothenioids contains AFGPs and thus has a potential protective role against ice entry, ii) AFGPs are distributed widely through the extracellular space ensuring that they are likely to come into immediate contact with ice that penetrates their protective barriers, and iii) using AFGP-coated nanoparticles as a proxy for AFGP adsorbed onto ice, we suggest that internal ice crystals are removed from the circulation through phagocytosis, primarily in the spleen. We argue that intracellular sequestration in the spleen minimizes the risks associated with circulating ice and enables the fish to store the ice until it can be dealt with at a later date, possibly by melting during a seasonal warming event. Copyright © Antarctic Science Ltd 2011

    Mosque-based emotional support among young Muslim Americans

    Full text link
    Despite a growing literature on social support networks in religious settings (i.e., church-based social support), little is known about mosque-based support among Muslims. This study investigates the demographic and religious behavior correlates of mosque-based social support among a multi-racial and ethnic sample of 231 young Muslims from southeast Michigan. Several dimensions of mosque-based support are examined including receiving emotional support, giving emotional support, anticipated emotional support and negative interactions with members of one’s mosque. Results indicated that women both received and antic- ipated receiving greater support than did men. Higher educational attainment was associated with receiving and giving less support compared to those with the lowest level of educational attainment. Moreover, highly educated members reported fewer negative interactions than less educated members. Mosque attendance and level of congregational involvement positively predicted receiving, giving, and anticipated emotional support from congregants, but was unrelated to negative interactions. Overall, the study results converge with previously established correlates of church- based emotional support.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107410/1/art%3A10.1007%2Fs13644-013-0119-0(1).pd

    Inhibition of Neuroblastoma Tumor Growth by Targeted Delivery of MicroRNA-34a Using Anti-Disialoganglioside GD2 Coated Nanoparticles

    Get PDF
    Neuroblastoma is one of the most challenging malignancies of childhood, being associated with the highest death rate in paediatric oncology, underlining the need for novel therapeutic approaches. Typically, patients with high risk disease undergo an initial remission in response to treatment, followed by disease recurrence that has become refractory to further treatment. Here, we demonstrate the first silica nanoparticle-based targeted delivery of a tumor suppressive, pro-apoptotic microRNA, miR-34a, to neuroblastoma tumors in a murine orthotopic xenograft model. These tumors express high levels of the cell surface antigen disialoganglioside GD2 (GD(2)), providing a target for tumor-specific delivery.Nanoparticles encapsulating miR-34a and conjugated to a GD(2) antibody facilitated tumor-specific delivery following systemic administration into tumor bearing mice, resulted in significantly decreased tumor growth, increased apoptosis and a reduction in vascularisation. We further demonstrate a novel, multi-step molecular mechanism by which miR-34a leads to increased levels of the tissue inhibitor metallopeptidase 2 precursor (TIMP2) protein, accounting for the highly reduced vascularisation noted in miR-34a-treated tumors.These novel findings highlight the potential of anti-GD(2)-nanoparticle-mediated targeted delivery of miR-34a for both the treatment of GD(2)-expressing tumors, and as a basic discovery tool for elucidating biological effects of novel miRNAs on tumor growth

    Measuring Five Dimensions of Religiosity Across Adolescence

    Get PDF
    This paper theorizes and tests a latent variable model of adolescent religiosity in which five dimensions of religiosity are interrelated: religious beliefs, religious exclusivity, external religiosity, private practice, and religious salience. Research often theorizes overlapping and independent influences of single items or dimensions of religiosity on outcomes such as adolescent sexual behavior, but rarely operationalizes the dimensions in a measurement model accounting for their associations with each other and across time. We use longitudinal structural equation modeling (SEM) with latent variables to analyze data from two waves of the National Study of Youth and Religion. We test our hypothesized measurement model as compared to four alternate measurement models and find that our proposed model maintains superior fit. We then discuss the associations between the five dimensions of religiosity we measure and how these change over time. Our findings suggest how future research might better operationalize multiple dimensions of religiosity in studies of the influence of religion in adolescence

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    High efficiency amine functionalization of cycloolefin polymer surfaces for biodiagnostics

    Get PDF
    Point-of-care (POC) diagnostics implementing microfluidic technology on single use disposable plastic chips has potential applications in personalized medicine, clinical diagnostics and global health. However, the challenges in commercializing POC devices must be addressed. Immobilization of biomolecules to plastic chips through appropriate surface functionalization is a key issue for the fabrication of new generation biomedical diagnostic devices. The most important requirements for a practicable surface functionalization process are speed, control and reliability. Plasma-based methods can meet these criteria. A single step, solventless, ecofriendly and high throughput nature of plasma processing makes them highly attractive. Here we demonstrate the efficient surface functionalization of a next-generation biosensor material, a chemically inert cycloolefin polymer (COP). The plasma formation of a surface-bound aminated siloxane network from mixed aminopropyltriethoxysilane and ethylenediamine precursors allowed us to form a well-adherent film with an exceptionally high degree of amine functionalization. We deduce that the siloxane was the critical component for radical insertion into the COP and for building a stable network to support the reactive amine functionalities. We present a full physical and chemical characterization of the films, including a detailed study of their swelling in water, using an array of surface analytical techniques: X-ray photoelectron spectroscopy, X-ray reflectivity, reflection infra-red spectroscopy, atomic force microscopy (AFM) and fluorophore binding reactions. We demonstrate an original approach for qualitatively analyzing the distribution of amine functionalities by counting surface-bound functionalized silica nanoparticles in the AFM. The relative contributions from covalent (specific) and non-covalent (non-specific) reaction chemistry assessed using 3�-fluorescein-labeled ssDNA attachment showed that the non-specific binding could be reduced significantly according to the particular feed gas mixture used to prepare the coating. A reaction mechanism has been proposed for the deposition of amine functionalities on COP plastic and also for enhancing the amine functionalities that affect the non-specific binding significantly. © 2010 The Royal Society of Chemistry

    Application of Ligninolytic Enzymes in the Production of Biofuels from Cotton Wastes

    Get PDF
    The application of ligninolytic fungi and enzymes is an option to overcome the issues related with the production of biofuels using cotton wastes. In this dissertation, the ligninolytic fungus and enzymes were evaluated as pretreatment for the biochemical conversion of Cotton Gin Trash (CGT) in ethanol and as a treatment for the transformation of cotton wastes biochar in other substances. In biochemical conversion, seven combinations of three pretreatments (ultrasonication, liquid hot water and ligninolytic enzymes) were evaluated on CGT. The best results were achieved by the sequential combination of ultrasonication, hot water, and ligninolytic enzymes with an improvement of 10% in ethanol yield. To improve these results, alkaline-ultrasonication was evaluated. Additionally, Fourier Transform Infrared (FT-IR) and principal component analysis (PCA) were employed as fast methodology to identify structural differences in the biomass. The combination of ultrasonication-alkali hydrolysis, hot liquid water, and ligninolytic enzymes using 15% of NaOH improved 35% ethanol yield compared with the original treatment. Additionally, FT-IR and PCA identified modifications in the biomass structure after different types of pretreatments and conditions. In thermal conversion, this study evaluated the biodepolymerization of cotton wastes biochar using chemical and biological treatments. The chemical depolymerization evaluated three chemical agents (KMnO4, H2SO4, and NaOH), with three concentrations and two environmental conditions. The sulfuric acid treatments performed the largest transformations of the biochar solid phase; whereas, the KMnO4 treatments achieved the largest depolymerizations. The compounds released into the liquid phase were correlated with fulvic and humic acids and silicon compounds. The biological depolymerization utilized four ligninolytic fungi Phanerochaete chrysosporium, Ceriporiopsis subvermispora, Postia placenta, and Bjerkandera adusta. The greatest depolymerization was obtained by C. subvermispora. The depolymerization kinetics of C. subvermispora evidenced the production of laccase and manganese peroxidase and a correlation between depolymerization and production of ligninolytic enzymes. The modifications obtained in the liquid and solid phases showed the production of humic and fulvic acids from the cultures with C. subvermispora. The results of this research are the initial steps for the development of new processes using the ligninolytic fungus and their enzymes for the production of biofuels from cotton wastes
    corecore