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Modelling random antibody adsorption and

immunoassay activity

D. Mackey∗, E. Kelly,

School of Mathematical Sciences
Dublin Institute of Technology
Kevin Street, Dublin 8, Ireland

and R. Nooney

Biomedical Diagnostics Institute
Dublin City University

Glasnevin, Dublin 9, Ireland

Abstract

One of the primary considerations in immunoassay design is opti-
mizing the concentration of capture antibody in order to achieve max-
imal antigen binding and, subsequently, improved sensitivity and limit
of detection. Many immunoassay technologies involve immobilization
of the antibody to solid surfaces. Antibodies are large molecules in
which the position and accessibility of the antigen-binding site depend
on their orientation and packing density.

In this paper we propose a simple mathematical model, based on
the theory known as random sequential adsorption (RSA), in order to
calculate how the concentration of correctly oriented antibodies (ac-
tive site exposed for subsequent reactions) evolves during the deposi-
tion process. It has been suggested by experimental studies that high
concentrations will decrease assay performance, due to molecule de-
naturation and obstruction of active binding sites. However, crowding
of antibodies can also have the opposite effect by favouring upright
orientations. A specific aim of our model is to predict which of these
competing effects prevails under different experimental conditions and
study the existence of an optimal coverage, which yields the maxi-
mum expected concentration of active particles (and hence the highest
signal).
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1 Introduction

Immunodiagnostics devices (or immunoassays) rely on the binding of anti-
gens by antibodies and are used to detect biomarkers for a variety of dis-
eases (such as cancer, HIV or cardiovascular disease) with high specificity
and sensitivity in a range of media including blood or urine. Antibodies are
glycoproteins produced by plasma cells whose primary function is to bind
specifically to an antigen and elicit an immune response, thereby protecting
the host from infection. Antibodies are large Y-shaped molecules composed
of two regions: a fragment crystallizable (Fc) region at the base and a frag-
ment antigen binding (Fab) region at the top (see Figure 1(a)). Each arm of
the Fab region contains a hypervariable region at its tip, called a paratope,
which is capable of binding strongly to one epitope on an antigen.

Many immunoassay technologies involve immobilization of the detection
antibody to solid surfaces; this configuration also occurs on a large scale
in physiological reactions in vivo. Widely used immobilization strategies
include physical adsorption (based on electrostatic and van de Waals in-
teractions) and covalent bonds, both of which result in a random particle
distribution on the surface. It is, however, well known that such immobi-
lization techniques have the unfortunate consequence of drastically reducing
the ability of antibodies to efficiently bind antigen, through physical mech-
anisms such as molecule denaturation upon contact with the solid surface
and crowding (or overlapping) of antibody fragments. (See, for example,
[8], [14], [16].) Although better orientation of antibodies can be achieved
through various molecular engineering strategies, most practical applications
use the physical and chemical adsorption methods mentioned above. The
passive adsorption of antibody particles onto the solid surface is achieved by
incubation in a solution of known concentration and the resulting surface-
adsorbed amount can be controlled experimentally, for example by varying
parameters such as the antibody bulk concentration or incubation time, [9],
[14], [16].

In this paper we consider the experimental configuration known as a di-
rect binding assay, [12]. The sample containing the antigen is introduced
over the sensor surface and the antigen then interacts with the immobilized
antibody. This reaction generates an optical or electrochemical signal which
is proportional to the reaction product; the dependence of this signal on
the antigen or antibody concentration is then plotted as a calibration (or
dose-response) curve for the assay. However, the model developed here can
also be used for more general immunological platforms such as sandwich
immunoassays, where the analyte to be measured is first captured to a sur-
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face by an immobilized antibody and then reacts with a second, labelled
antibody in order to produce a detectable signal. The sandwich format has
the advantage of increased sensitivity and robustness and forms the basis
for many clinical and commercial detection tests.

The theory known as random sequential adsorbtion (RSA) has been suc-
cessfully used over the past few decades to describe monolayer particle de-
position, with wide applications in many physical and biological settings
such as, for example, thin films of adsorbed colloidal particles, reactions on
polymer chains, DNA sequencing, etc. [2], [7]. In the standard RSA model,
rigid particles are placed at random, sequentially and irreversibly onto solid
smooth surfaces in such a way that they do not overlap. If an incoming
particle approaches an already covered part of the substrate, it is rejected.
Eventually no more particles fit on the surface and the process stops in the
so-called jamming limit . In one dimension, this process is commonly re-
ferred to as “the car parking problem” (or interval filling) and the jamming
coverage, also known as the Rényi constant, has been calculated in [6] to be
CR ≈ 0.74756. Many generalizations of this standard framework exist and
include, for example, competitive RSA (where particles of two or more differ-
ent sizes compete for adsorption, see [4] and references therein), cooperative
sequential adsorption, [2], and RSA of overlapping particles, [7]. The orig-
inal paper [6] calculates the jamming coverage using a recursive approach,
however, recent papers dealing with applications to physical sciences have
focussed on understanding the kinetics of RSA processes and have studied
the time evolution of quantities such as gap distribution or total coverage
during deposition, [4], [5].

Using the standard RSA theory for uniform size particles with no over-
lap, we now develop a simple procedure for evaluating the percentage of
immobilized antibodies which are correctly oriented, with their binding site
exposed, and therefore available for reaction with antigen. This percentage
is expressed as a function of the total antibody coverage and used for eval-
uating the signal in a direct assay, which leads to a theoretical prediction of
the calibration (or dose-response) curve. In many experimental situations an
optimal antibody concentration has been identified beyond which the signal
drops leading to a so-called hook effect . In such cases, a theoretical model is
highly useful for optimizing assay design, as experimental studies are time
consuming and antibodies are often patent protected and expensive. On the
other hand, there are a number of situations when the hook effect does not
occur. It has been suggested in recent work (see, for example, [8]) that, at
high coverages, two competing effects are involved whereby particle crowd-
ing leads to overlaying and obstruction of binding sites (which is associated
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with signal decrease and a hook effect) but also favours improved (upright)
antibody orientation which yields a signal increase. Representing particles
by one-dimensional intervals is obviously a major simplification but we find
that the model presented here reproduces many of the qualitative features
of the adsorbed antibody activity (such as the competing effects described
above) and gives us a good starting point for understanding such physical
systems.

2 Calculation of active percentage

In this section we summarize the kinetic RSA calculation of the gap distri-
bution and coverage as functions of time; these results are well-known in
the literature so the derivation details are not included. A one-dimensional
model for antibody activity is then introduced which estimates the active
percentage using the gap distribution and predicts how this quantity changes
with total surface coverage.

2.1 Random sequential adsorption: the kinetic approach

In the standard, one-dimensional RSA formulation, we start with a line
segment of length L, assumed empty at t = 0. Unit length intervals are
placed randomly and sequentially at a fixed rate onto the line, provided
they do not overlap already deposited intervals. We introduce the function
N(x, t) as the gap length density function at time t (so N(x, t)dx represents
the mean number of gaps with length between x and x + dx) and we let
P (x, t) = N(x, t)/L. As L → ∞, the evolution of P can be described by the
following integro-differential equation, [5]

∂P

∂t
=

{

−(x− 1)P (x, t) + 2
∫

∞

x+1 P (y, t) dy, if x ≥ 1

2
∫

∞

x+1 P (y, t) dy, if x < 1

which essentially describes the rates at which gaps of length x can be created
or destroyed. Using the initial conditions

P (x, 0) = 0, lim
t→0

∫

∞

0
xP (x, t) dx = 1,

the solution to the above equations can be shown to be

P (x, t) =

{

t2 F (t) e−(x−1)t, if x ≥ 1

2
∫ t

0 τF (τ) e−xτ dτ, if x < 1
(1)
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where

F (t) = exp

[

−2

∫ t

0

1− e−u

u
du

]

.

The total coverage is then given by

θ(t) = 1−

∫

∞

0
xP (x, t) dx =

∫ t

0
F (τ) dτ,

which converges in the long term to the jamming limit (Rényi’s constant)

lim
t→∞

θ(t) = CR = 0.74756...

Note that θ is a non-dimensional quantity which represents the fraction of
the line which is covered by intervals.

2.2 Derivation of the active antibody coverage

We introduce a simple model in which antibody molecules are represented
by non-overlapping circles, where a certain fraction of the circumference de-
notes the active area (see Figure 1). In this representation, all antibodies
are assumed to have the same dimension in all directions and the coverage
of the substrate can be described using the one-dimensional RSA process
described in the previous section (if we identify the molecule diameters with
the filling intervals). An immobilized antibody is active if its binding site

Fc

Fab

Antigen binding
region

Antigen binding
region

(a) Antibody structure

Down

Left Right

Active site

Up

(b) Active particle model

Figure 1: An antibody is active if it has the correct orientation.

(Fab region) is correctly exposed and available to bind the incoming anti-
gen. In the current model a particle is defined to be active if, either its
binding site is pointing “up” (meaning its centre is contained within the
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relevant quadrant), or else pointing left or right and a gap of length at least
δ exists between the binding site and the neighbouring adsorbed molecule,
where δ depends on the size of the oncoming reactant molecules and it is
assumed that δ ≤ 1. The antibody orientation is usually described in the
immunoassay literature (see, for example, [13], [14]) by one of the follow-
ing positions: “end on” (which would correspond to our “up” definition),
“head on” (down), “flat on” and “side on” (both of which correspond, in
our 1-dimensional model to a “side” orientation). The total number of ac-
tive molecules at any given time, Nactive, is then calculated by adding all
“up” particles, all “left” particles with enough space on their left (which is
obtained by multiplying the percentage of particles pointing left by the total
number of gaps ≥ δ) and all “right” particles with enough space on their
right (obtained in the same way as the left case). (The “down” particles are
assumed inactive.) Moreover, if two adjacent particles are pointing towards
the gap between them and this gap is not large enough to fit two antigens
then only one of the immobilized particles is considered active. The active
coverage is defined as B = Nactive × particle length/L and can be calculated
in terms of the gap density function (1) as follows,

B(t) = Pupθ(t) + 2Pside

∫

∞

δ

P (x, t) dx − P 2
side

∫ 2δ

δ

P (x, t) dx

= Pupθ(t) + 2Pside

(

tF (t) + 2

∫ t

0
(e−δτ − e−τ )F (τ)dτ

)

(2)

− P 2
side ×

{

2
∫ t

0 (e
−δτ − e−2δτ )F (τ) dτ, if 2δ < 1

tF (t) (1 − e−(2δ−1)t) + 2
∫ t

0 (e
−δτ − e−τ )F (τ) dτ, if 2δ ≥ 1

,

where Pup is the percentage of particles in the “up” position and Pside is the
percentage of particles with binding site facing either left or right (assuming
these two positions are equally likely). We normalize the active and total
coverages by defining

B̄ =
B

CR

, θ̄ =
θ

CR

,

so that 0 ≤ B̄(t), θ̄(t) ≤ 1, for all t.
Experimental evidence suggests that antibodies are more likely to lie flat

at low surface coverage while crowding may favour an upward orientation,
[8], [9], [13]. Based on this observation, we propose a linear model which
expresses the percentages of particles in different configurations as functions
of coverage,

Pside(θ̄) =

(

ǫ−
1

2

)

θ̄ +
1

2
; Pup(θ̄) =

(

1

2
− ǫ

)

θ̄, (3)
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where 0 < ǫ < 1/2 is a parameter which measures the gradient of this
variation. Note that, as θ̄ → 1 we have Pside(θ̄) → ǫ and Pup(θ̄) → 1

2 − ǫ
so ǫ also reflects the prevailing configuration as the coverage approaches the
jamming limit. (For example, if 0 < ǫ < 1/4, antibody crowding will lead
to more particles standing up.) It is difficult to assign precise values for ǫ
based on experimental information as, in general, the exact orientation of
antibodies is unknown. This parameter could be linked, for example, to
physical quantities such as the solution concentration of antibodies (it has
been suggested, [8], that incubation with a higher concentration increases the
adsorption rate and lowers the probability of flat-on or side-on particles due
to the time constraint), surface properties or the method of immobilization.
Note that 2Pside + 2Pup = 1 as we assumed that the “up” and “down”
orientations are also equally likely.

The normalized concentration of active antibodies B̄ is plotted in Fig-
ure 2 against the normalized total concentration θ̄, using the formulas (2)
and (3). Recall that θ̄ = 1 corresponds to the jamming coverage (the max-
imum possible monolayer coverage achieved by random adsorption). The
numerical integration is implemented in the C programming language while
the data manipulation and graphics were performed using the IDL (Inter-
active Data Language) software. We consider the cases of large antigen

Large antigen
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Figure 2: Active coverage, B̄, as a function of total coverage, θ̄, for large
(δ = 1) and small (δ = 0.1) antigen. The various curves in each diagram
correspond to different orientation probabilities, as reflected by ǫ.

particles (δ = 1, so the antigen size is equal to that of the antibody) and
small antigen particles (δ = 0.1), each of these relevant to various biosens-
ing applications. Note that the behaviour of the active coverage function
is qualitatively different in the two cases, primarily due to different lateral
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accessibility of large and small antigen particles. In particular, when dealing
with large antigen sizes, the number of active antibodies is generally lower,
the hook effect (when present) is more pronounced and appears at lower
coverage values and the particle orientation near jamming (as reflected by
ǫ) has a more dramatic influence on activity. These differences will be dis-
cussed in more detail in the context of the calibration curves presented in
Figure 3 (Section 3).

3 Modelling immunoassay response and kinetics

The reaction between an antibody confined to a surface and antigen dis-
tributed in solution occurs in many physiological and industrial processes
and has been studied extensively. The simplest and most commonly used
model which describes the chemical binding kinetics between the two pro-
teins is given by the bimolecular reaction,

A+B
kon
⇄

koff

C,

where A is antigen, B is the bound antibody, C is the (bound) product,
while kon and koff represent the association and dissociation rate constants,
respectively. This can be cast as the following differential equation (see, for
example, [1], [3], [8])

dC

dt
= konA(t) (B0 − C(t))− koffC(t),

where all the functions denote concentrations and B0 is the initial concen-
tration of immobilized antibody. This equation (often derived from the
Langmuir adsorption model) assumes, among other restrictions, homoge-
neous particle distribution and binding that is independent of mass trans-
port (so the concentration of the antigen at the surface is equal to its bulk
concentration). The equilibrium value of the product is given by

C∗ =
1

2

[

A0 +B0 + ka −
√

(A0 +B0 + ka)2 − 4A0B0

]

, (4)

where A0 is the initial antigen concentration and

ka =
koff
kon

is called the affinity (or equilibrium dissociation) constant.
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Note that equation (4) expresses the signal as a function of B0, which
is the reacting (that is, active) concentration of antibody and is, essentially,
unknown in experimental settings. To obtain a more useful model we now
calculate the signal as a function of the total antibody present on the surface,
by first converting concentrations into coverages. Thus, the initial active
antibody concentration can be written as

B0 =
B

D
=

B̄CR

D
≡ κB̄,

where D is the diameter (or length, in our 1-dimensional model) of the
antibody molecule, while B is the initial active coverage, as calculated by
(2). The constant κ = CR/D represents the concentration of antibodies
corresponding to the jamming coverage CR and we let

α =
A0D

θ
=

A0

κθ̄

be the initial antigen to antibody concentration ratio. The signal (4) be-
comes

C =
1

2

[

αθ̄ + B̄ +K −

√

(αθ̄ + B̄ +K)2 − 4αθ̄B̄

]

, (5)

where

C =
C∗

κ
, K =

ka
κ
.

We take the non-dimensional quantity C as a measure of the assay signal and
plot (5) as a function of the total antibody coverage θ̄, since B̄ has already
been calculated in terms of θ̄ in the previous section.

Figure 3 provides a qualitative comparison to experimental calibration
curves. The assay signals are plotted for large and small antigen parti-
cles, two values of the ǫ parameter and various antigen/antibody ratios
(α = 0.2− 5). Recall that ǫ, introduced in (3), is a measure of the variation
of particle orientation during the adsorption process. For example, ǫ = 0.05
corresponds to fast growth of the number of antibodies in the up/down ori-
entation so that near the jammed state, θ̄ → 1, only 10% of them are lying
flat. The corresponding graphs in Figure 3 show a steady increase in the
signal, for both large and small antigens, which would seem to suggest that
the optimal strategy in this case is to get as close as possible to a jammed
monolayer configuration. By contrast, if ǫ = 0.45, the side orientation pre-
dominates throughout the whole deposition process, 0 ≤ θ̄ ≤ 1, with 90%
of antibodies found in this configuration at the jamming limit. Figure 3
shows that the behaviour of the signal now depends strongly on the antigen
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Large antigen, ε=0.45
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Small antigen, ε=0.45
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Figure 3: Assay signal as a function of total coverage, θ̄, for δ = 1 (large
antigen) and δ = 0.1 (small antigen). The various curves in each diagram
correspond to different antigen/antibody ratios, α = 0.2 − 5.

size. For large particles, the signal initially increases and then decreases,
which indicates the existence of an optimal antibody coverage; moreover,
this optimal value depends on α, the antigen/antibody ratio (so that, for
lower antigen concentrations, the signal growth lasts longer). This result
is also observed experimentally in direct binding assays where adsorption
of capture antibody at high concentration can result in a drop of antigen
signal due to steric hindrance from overcrowding, [11], [14], [16]. For small
antigen the hook effect is less pronounced and the optimal antibody cov-
erage (at high antigen concentrations) occurs closer to the jamming limit;
also, the signal values in this case are much higher than for large particles.
These results are intuitively clear if we consider that (when the side orien-
tation prevails), as the gaps get progressively smaller during deposition, it
becomes increasingly more difficult for large antigens to bind and hence the
signal drops.
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4 Conclusions and comparison with experimental

data

We have presented a new model for quantifying the activity of antibodies
immobilized on a solid surface, based on the standard random sequential
adsorption (RSA) theory. In spite of its simplicity, this model reproduces
many qualitative features of immunoassays reported in the experimental lit-
erature. The results presented in Section 3 support the conclusion of [9]
that the optimal performance of immunoassays is determined by the inter-
play between several factors such as immobilized antibody density, relative
size of antigens and method of immobilization.

The main parameters used in this mathematical model are ǫ, which quan-
tifies antibody orientation, and δ, which represents the ratio of antigen to
antibody size. A direct comparison between our theoretical results and ex-
isting experimental data is only possible if enough information is provided
regarding the size of the particles involved and their prevalent orientation.
For example, the results of [14] and [16] report high antigen-binding rates
at low surface coverage of antibody, which then decrease at higher antibody
concentrations. A flat-on orientation of antibodies is determined by neutron
reflection (NR) measurements and it is concluded that the signal drop at
higher packing density is due to increased steric hindrance to antigen ac-
cess. These conclusions qualitatively match our ǫ = 0.45 results, which also
display the hook effect, especially so in the case of [14] where the antigen
used is human chorionic gonadotrophin (hCG), which is characterized as a
large molecule.

It was suggested in [8] that the antigen-binding activity at high coverage
is determined by two competing effects: due to crowding, the antibodies
may adopt a favourable outward orientation but, on the other hand, they
may become shielded and less accessible. The increase of the signal at high
antibody concentrations observed in the paper referenced above (where a
decrease was not seen until after the monolayer limit was exceeded) was at-
tributed by the authors to antibodies facing outward. Our results in Figure 3
also show that, if antibody crowding promotes improved particle orientation
(ǫ = 0.05), the signal increases steadily which suggests that high surface con-
centrations are beneficial. Otherwise, if the prevailing effect is shielding of
active sites, then the signal decreases (as seen in the case when ǫ = 0.45).
The hook effect appears in our theoretical calibration curves for ǫ = 0.45, is
especially visible for large antigens and is associated with the existence of
a well-defined optimal surface coverage, which should be relevant to assay
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design and functionality.
Many generalizations are possible for this model and include more com-

plex antibody geometry (such as allowing different lengths for the side and
upward orientations) and the possibility of partial overlap between adsorbed
antibodies. Also, many papers (see, for example, [9], [15]) describe a phe-
nomenon known as clustering (aggregation of antibodies due to attraction
forces between neighbouring molecules) which would seem to suggest that,
in some cases, adsorption is not uniform and would be more correctly mod-
elled within a cooperative RSA framework. Regarding the antibody-antigen
kinetics presented in Section 3, a more realistic approach would take into
account the transport of the analyte to the surface (by convection and/or
diffusion) and represent the kinetic rate constants as coverage-dependent
functions (a fact which reflects the varying affinity of the immobilized an-
tibodies towards antigen due to antibody denaturation at lower coverages,
[8]). Such improvements will form the subject of further studies.
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