8 research outputs found

    Genetic Analysis of Root and Shoot Traits in the ‘Essex’ By ‘Forrest’ Recombinant Inbred Line (RIL) Population of Soybean [Glycine max (L.) Merr.]

    Get PDF
    Crop productivity is severely reduced by water deficit and drought in many plant species including soybean. Improved root and shoot traits can contribute to drought tolerance ability of the plant. This research was conducted to identify QTL that underlie several root and shoot traits in the ‘Essex’ by ‘Forrest’ (ExF RILs, n=94) recombinant inbred line (RIL) soybean population. Field collected samples were used for gathering phenotypic data of basal root thickness (BRT), lateral root number (LRN), maximum root length (MRL), root fresh weight (RFW), root dry weight (RDW), shoot fresh weight (SFW), shoot dry weight (SDW), and calculating RFW/SFW, and RDW/SDW ratios. All traits and ratios were compared against DNA markers using the composite interval mapping (CIM). A total of 12 QTL: 3 for MRL, 1 QTL for LRN, 1 QTL for BRT, 2 QTL for RFW, 2 QTL for RDW, 4 QTL for SFW, 3 QTL for SDW, and 3 QTL for SFW/SDW were identified and mapped on different linkage groups (LGs) A2, B2, C2, D1a, F, G, and N. The LOD scores of these QTL ranged from 2.5 to 6.0. No QTL were associated with RFW/RDW. The root and shoot trait QTL of this study may benefit breeding programs for producing cultivars tolerant to water deficit and high yield. Preliminary analyses of genes the QTL regions using GO annotation gave insight into genes that may underlie some of these QTLs

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)

    The 16th Data Release of the Sloan Digital Sky Surveys : First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).Peer reviewe

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V

    Study of Factors Affecting Students' Performance in three Sci- ence Classes: General Biology, Botany, and Microbiology at Fayetteville State University

    No full text
    Abstract Several studies have reported the effects of class time on overall students' performances, but there are just few on the influence of factors as absences, gender, class section, class difficulty or semester. The objectives of this study were to analyze the effects of the above mentioned factors (absences, class time, gender, class difficulty and semester) on college students' performance in three science classes: Principles of Biology (BIOL 150), General Botany (BOTN 210), and Microbiology & Immunology (BIOL 330) over a period of 3 years. Analysis of variance (ANOVA) for absences showed significant differences for the number of those between the different semesters (fall, spring, and summer) and that students tend to miss more classes (P>0.05) during fall and spring than summer semesters. Gender (P>0.3515) and class section (P>0.0608) do not seem to significantly affect the average grades in general biology and microbiology. Regarding gender, significant differences were observed in BOTN 210 between females and males average grades. Females tend to do better than males at least in this class. There was a moderate but strongly significant negative correlation (-0.59, P>0.0001***) between the average grades and the number of absences in almost all classes. ANOVA also showed significant differences for the average grades between the different class times at P>0.0020*. The Tukey-Kramer test revealed that students perform better in morning classes compared to afternoon classes. The class time plays a significant role in the number of absences as well. Analysis showed that the most "convenient" time for students is late morning or after __________________________________________________ E-mail: [email protected] noon given that they tend to result in fewer absences. In addition, students tend to receive better grades in BOTN 210 that they do in BIOL 330 and BIOL 150 (Means 77.33, 69.42, and 67.82, respectively) which can be justified by the fact that the latter two are more intense than the first. Overall, absences are the only factor among those studied (absences, gender, class section, class difficulty and semester) that seem to affect student's grades negatively in all three classes (BIOL 150, BOTN 210 and BIOL 330). Typically, factors such as gender, and class section do not have any effect on students' performance. Results for class time show that students may perform better in morning or evening classes. In other cases time does not play any significant role to efficiency

    The ‘PI 438489B’ by ‘Hamilton’ SNP-Based Genetic Linkage Map of Soybean [\u3ci\u3eGlycine max\u3c/i\u3e (L.) Merr.] Identified Quantitative Trait Loci that Underlie Seedling SDS Resistance

    Get PDF
    Soybeans [Glycine max (L.) Merr.] are susceptible to many diseases including fungal diseases such as soybean sudden death syndrome (SDS). Several studies reported SDS resistance quantitative trait loci (QTL) on the soybean genome using different recombinant inbred line (RIL) populations and low density genetic linkage maps. High density exclusively single nucleotide polymorphisms-based (SNP-based) maps were not yet reported in soybean. The objectives of this study were (1) to construct a high density SNP-based genetic linkage map of soybean using the ‘PI438489B’ by ‘Hamilton’ (PIxH, n=50) recombinant inbred line population, and (2) to map QTL for SDS resistance using this high-density reliable genetic SNP-based map. The PI438489B by Hamilton high-density SNP-based genetic map was a high density map composed of 31 LGs, 648 SNPs, and covered 1,524.7 cM with an average of 2.37 cM between two adjacent SNP markers. Fourteen significant QTL were identified for SDS resistance using interval mapping (IM) and composite interval mapping (CIM) with LOD scores that ranged between 2.6 and 5.0. Twelve QTL were identified for foliar disease severity (FDS) and three QTL for root rot severity (RRS) of which one QTL underlain both FDS and RRS. The fourteen QTL were mapped onto ten separate chromosomes of the soybean genome. Seven of the intervals encompassing the QTL had been identified previously (on LGs C1, C2, D1b, G, L, N and O) associated with resistance to SDS but seven were novel (LGs A2 (2), B1, C2, D1a, D1b and O). We constructed the first PI438489B by Hamilton exclusively SNP-Based map and identified fourteen QTL that underlie SDS resistance including both resistances to foliar and root rot symptoms caused by Fusarium virguliforme infection. The QTL discovered here for SDS resistance could be useful to include in breeding programs in developing soybean cultivars resistant to SDS
    corecore