423 research outputs found

    3D performance capture for facial animation

    Get PDF
    This work describes how a photogrammetry based 3D capture system can be used as an input device for animation. The 3D Dynamic Capture System is used to capture the motion of a human face, which is extracted from a sequence of 3D models captured at TV frame rate. Initially the positions of a set of landmarks on the face are extracted. These landmarks are then used to provide motion data in two different ways. First, a high level description of the movements is extracted, and these can be used as input to a procedural animation package (i.e. CreaToon). Second the landmarks can be used as registration points for a conformation process where the model to be animated is modified to match the captured model. This approach gives a new sequence of models, which have the structure of the drawn model but the movement of the captured sequence

    Entry pathways of herpes simplex virus type 1 into human keratinocytes are dynamin- and cholesterol-dependent

    Get PDF
    Herpes simplex virus type 1 (HSV-1) can enter cells via endocytic pathways or direct fusion at the plasma membrane depending on the cell line and receptor(s). Most studies into virus entry have used cultured fibroblasts but since keratinocytes represent the primary entry site for HSV-1 infection in its human host, we initiated studies to characterize the entry pathway of HSV-1 into human keratinocytes. Electron microscopy studies visualized free capsids in the cytoplasm and enveloped virus particles in vesicles suggesting viral uptake both by direct fusion at the plasma membrane and by endocytic vesicles. The ratio of the two entry modes differed in primary human keratinocytes and in the keratinocyte cell line HaCaT. Inhibitor studies further support a role for endocytosis during HSV-1 entry. Infection was inhibited by the cholesterol-sequestering drug methyl-beta-cyclodextrin, which demonstrates the requirement for host cholesterol during virus entry. Since the dynamin-specific inhibitor dynasore and overexpression of a dominant-negative dynamin mutant blocked infection, we conclude that the entry pathways into keratinocytes are dynamin-mediated. Electron microscopy studies confirmed that virus uptake is completely blocked when the GTPase activity of dynamin is inhibited. Ex vivo infection of murine epidermis that was treated with dynasore further supports the essential role of dynamin during entry into the epithelium. Thus, we conclude that HSV-1 can enter human keratinocytes by alternative entry pathways that require dynamin and host cholesterol

    Inner tegument protein pUL37 of herpes simplex virus type 1 is involved in directing capsids to the trans-Golgi network for envelopment

    Get PDF
    Secondary envelopment of herpes simplex virus type 1 has been demonstrated as taking place at the trans-Golgi network (TGN). The inner tegument proteins pUL36 and pUL37 and the envelope glycoproteins gD and gE are known to be important for secondary envelopment. We compared the cellular localizations of capsids from a virus mutant lacking the UL37 gene with those of a virus mutant lacking the genes encoding gD and gE. Although wild-type capsids accumulated at the TGN, capsids of the pUL37− mutant were distributed throughout the cytoplasm and showed no association with TGN-derived vesicles. This was in contrast to capsids from a gD−gE− mutant, which accumulated in the vicinity of TGN vesicles, but did not colocalize with them, suggesting that they were transported to the TGN but were unable to undergo envelopment. We conclude that the inner tegument protein pUL37 is required for directing capsids to the TGN, where secondary envelopment occurs

    Coproducing Knowledge of the Implementation of Complex Digital Health Interventions for Adults with Acquired Brain Injury and their Communication Partners: Protocol for a Mixed Methods Study.

    Full text link
    BACKGROUND: The Social Brain Toolkit, conceived and developed in partnership with stakeholders, is a novel suite of web-based communication interventions for people with brain injury and their communication partners. To support effective implementation, the developers of the Social Brain Toolkit have collaborated with people with brain injury, communication partners, clinicians, and individuals with digital health implementation experience to coproduce new implementation knowledge. In recognition of the equal value of experiential and academic knowledge, both types of knowledge are included in this study protocol, with input from stakeholder coauthors. OBJECTIVE: This study aims to collaborate with stakeholders to prioritize theoretically based implementation targets for the Social Brain Toolkit, understand the nature of these priorities, and develop targeted implementation strategies to address these priorities, in order to support the Social Brain Toolkit's implementation. METHODS: Theoretically underpinned by the Nonadoption, Abandonment, Scale-up, Spread, and Sustainability (NASSS) framework of digital health implementation, a maximum variation sample (N=35) of stakeholders coproduced knowledge of the implementation of the Social Brain Toolkit. People with brain injury (n=10), communication partners (n=11), and clinicians (n=5) participated in an initial web-based prioritization survey based on the NASSS framework. Survey completion was facilitated by plain English explanations and accessible captioned videos developed through 3 rounds of piloting. A speech-language pathologist also assisted stakeholders with brain injury to participate in the survey via video teleconference. Participants subsequently elaborated on their identified priorities via 7 web-based focus groups, in which researchers and stakeholders exchanged stakeholder perspectives and research evidence from a concurrent systematic review. Stakeholders were supported to engage in focus groups through the use of visual supports and plain English explanations. Additionally, individuals with experience in digital health implementation (n=9) responded to the prioritization survey questions via individual interview. The results will be deductively analyzed in relation to the NASSS framework in a coauthorship process with people with brain injury, communication partners, and clinicians. RESULTS: Ethical approval was received from the University of Technology Sydney Health and Medical Research Ethics Committee (ETH20-5466) on December 15, 2020. Data were collected from April 13 to November 18, 2021. Data analysis is currently underway, with results expected for publication in mid-2022. CONCLUSIONS: In this study, researchers supported individuals with living experience of acquired brain injury, of communicating with or clinically supporting someone post injury, and of digital health implementation, to directly access and leverage the latest implementation research evidence and theory. With this support, stakeholders were able to prioritize implementation research targets, develop targeted implementation solutions, and coauthor and publish new implementation findings. The results will be used to optimize the implementation of 3 real-world, evidence-based interventions and thus improve the outcomes of people with brain injury and their communication partners. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/35080

    Cryotomography of budding influenza a virus reveals filaments with diverse morphologies that mostly do not bear a genome at their distal end

    Get PDF
    Influenza viruses exhibit striking variations in particle morphology between strains. Clinical isolates of influenza A virus have been shown to produce long filamentous particles while laboratory-adapted strains are predominantly spherical. However, the role of the filamentous phenotype in the influenza virus infectious cycle remains undetermined. We used cryo-electron tomography to conduct the first three-dimensional study of filamentous virus ultrastructure in particles budding from infected cells. Filaments were often longer than 10 microns and sometimes had bulbous heads at their leading ends, some of which contained tubules we attribute to M1 while none had recognisable ribonucleoprotein (RNP) and hence genome segments. Long filaments that did not have bulbs were infrequently seen to bear an ordered complement of RNPs at their distal ends. Imaging of purified virus also revealed diverse filament morphologies; short rods (bacilliform virions) and longer filaments. Bacilliform virions contained an ordered complement of RNPs while longer filamentous particles were narrower and mostly appeared to lack this feature, but often contained fibrillar material along their entire length. The important ultrastructural differences between these diverse classes of particles raise the possibility of distinct morphogenetic pathways and functions during the infectious process

    A bone grease processing station at the Mitchell Prehistoric Indian Village: archaeological evidence for the exploitation of bone fats

    Get PDF
    © Association for Environmental Archaeology 2015. Author's accepted manuscript version deposited in accordance with SHERPA RoMEO guidelines. The definitive version is available at http://www.maneyonline.com/doi/abs/10.1179/1749631414Y.0000000035.Recent excavations at the Mitchell Prehistoric Indian Village, an Initial Middle Missouri site in Mitchell, South Dakota have revealed a large, clay-lined feature filled with fractured and fragmented bison bones. Fracture and fragmentation analysis, along with taphonomic evidence, suggests that the bones preserved within the feature represent evidence of prehistoric bone marrow and bone grease exploitation. Further, the character of the feature suggests that it served as a bone grease processing station. Bone fat exploitation is an activity that is frequently cited as a causal explanation for the nature of many fractured and fragmented bone assemblages in prehistory, and zooarchaeological assemblages have frequently been studied as evidence of bone fat exploitation. The Mitchell example provides some of the first direct, in-situ archaeological evidence of a bone grease processing feature, and this interpretation is sustained by substantial analytical evidence suggesting bone fat exploitation. This new evidence provides a clearer concept of the nature of bone fat exploitation in prehistory as well as an indication of the scale and degree to which bone grease exploitation occurred at the Mitchell site. Finally, this research demonstrates the importance of careful zooarchaeological and taphonomic analysis for the interpretation of both artifactual remains as well as archaeological features

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies

    <i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties

    Get PDF
    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data

    Initial data release from the INT Photometric H alpha Survey of the Northern Galactic Plane (IPHAS)

    Get PDF
    The INT/WFC Photometric Hα Survey of the Northern Galactic Plane (IPHAS) is an imaging survey being carried out in Hα, r′ and i′ filters, with the Wide Field Camera (WFC) on the 2.5-m Isaac Newton Telescope (INT) to a depth of r′= 20 (10σ). The survey is aimed at revealing the large scale organization of the Milky Way and can be applied to identifying a range of stellar populations within it. Mapping emission line objects enables a particular focus on objects in the young and old stages of stellar evolution ranging from early T-Tauri stars to late planetary nebulae. In this paper we present the IPHAS Initial Data Release, primarily a photometric catalogue of about 200 million unique objects, coupled with associated image data covering about 1600 deg2 in three passbands. We note how access to the primary data products has been implemented through use of standard virtual observatory publishing interfaces. Simple traditional web access is provided to the main IPHAS photometric catalogue, in addition to a number of common catalogues (such as 2MASS) which are of immediate relevance. Access through the AstroGrid VO Desktop opens up the full range of analysis options, and allows full integration with the wider range of data and services available through the Virtual Observatory. The IDR represents the largest data set published primarily through VO interfaces to date, and so stands as an exemplar of the future of survey data mining. Examples of data access are given, including a cross-matching of IPHAS photometry with sources in the UKIDSS Galactic Plane Survey that validates the existing calibration of the best data
    corecore