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Abstract

Herpes simplex virus type 1 (HSV-1) can enter cells via endocytic pathways or direct fusion at the plasma membrane
depending on the cell line and receptor(s). Most studies into virus entry have used cultured fibroblasts but since
keratinocytes represent the primary entry site for HSV-1 infection in its human host, we initiated studies to characterize the
entry pathway of HSV-1 into human keratinocytes. Electron microscopy studies visualized free capsids in the cytoplasm and
enveloped virus particles in vesicles suggesting viral uptake both by direct fusion at the plasma membrane and by
endocytic vesicles. The ratio of the two entry modes differed in primary human keratinocytes and in the keratinocyte cell
line HaCaT. Inhibitor studies further support a role for endocytosis during HSV-1 entry. Infection was inhibited by the
cholesterol-sequestering drug methyl-b-cyclodextrin, which demonstrates the requirement for host cholesterol during virus
entry. Since the dynamin-specific inhibitor dynasore and overexpression of a dominant-negative dynamin mutant blocked
infection, we conclude that the entry pathways into keratinocytes are dynamin-mediated. Electron microscopy studies
confirmed that virus uptake is completely blocked when the GTPase activity of dynamin is inhibited. Ex vivo infection of
murine epidermis that was treated with dynasore further supports the essential role of dynamin during entry into the
epithelium. Thus, we conclude that HSV-1 can enter human keratinocytes by alternative entry pathways that require
dynamin and host cholesterol.
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Introduction

Herpes simplex virus type 1 (HSV-1) enters its human host via

epithelia of mucosa, skin or cornea where keratinocytes represent

the primary entry site. Cellular entry of HSV-1 involves multiple

steps. Initial virus-cell contact is mediated by HSV-1 envelope

glycoproteins gC and/or gB with cell surface heparan sulfate

proteoglycans which facilitate subsequent binding to coreceptors.

The viral envelope glycoprotein gD serves as the major virus

ligand for all known HSV coreceptors and the best studied gD

coreceptor is the immunoglobulin-like cell-cell adhesion molecule

nectin-1 (named HveC) [1]. Depending on the cell line HSV-1 can

enter cells either by direct fusion of the viral envelope with the

plasma membrane or by endocytic pathways [2,3,4,5] which can

be both pH-dependent and pH-independent [6]. Entry into

neurons and Vero cells can occur via fusion at the plasma

membrane at neutral pH while fusion with HeLa and CHO cells

involves pH-dependent endocytosis, and fusion with C10 (B78-H1

mouse melanoma expressing nectin-1) cells involves pH-indepen-

dent endocytosis. Interestingly, expression of nectin-1 in CHO

cells correlates with endocytic uptake while expression of PILRa

(paired immunoglobulin-like type 2 receptor a) in CHO cells

points to HSV-1 uptake via fusion suggesting that the entry

pathway into the same cell line depends on the cellular entry

coreceptor used [7]. Furthermore, the same receptor may initiate

different entry pathways, depending on the cell in which it is

expressed. When expressed in the J1.1-2 cell line, nectin-1

mediates entry that is not blocked by endosome acidification

inhibitors, however, nectin-1 mediated entry into CHO cells is

dependent on endosome acidification [2]. After additional

overexpression of avb3-integrin, HSV-1 entry in J1.1-2 nectin-1

cells is cholesterol- and dynamin-independent whereas cholesterol

and dynamin play a role in CHO-nectin-1 expressing cells [8]. A

phagocytosis-like uptake in which dynamin-mediated processes

have been implicated, has been also suggested for CHO-nectin-1

expressing cells [9]. Dynamin is a multidomain GTPase that

controls several distinct endocytic pathways, with the clathrin-

mediated endocytosis being the best studied [10]. Dynamin plays a

direct role in catalyzing membrane fission. During clathrin-

mediated endocytosis dynamin forms a helical polymer around the

vesicle neck and, upon GTP hydrolysis, mediates the fission of the

vesicle from the plasma membrane [11]. Recent studies have also
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implicated dynamin in further cellular processes such as regulation

of actin assembly and reorganization via its interactions with many

actin-binding proteins [12,13]. Furthermore, dynamin can

function in the process of fusion pore expansion and postfusion

events in exocytosis [14,15].

HSV-1 seems to be capable of using a variety of entry

mechanisms that may reflect an adaptation to differences in its

target cells. The goal of this study was to characterize the HSV-1

entry mechanisms into human keratinocytes since little is known

about this entry portal in the human host. There has been one

report that HSV-1 may enter keratinocytes via a pH-dependent

endocytic pathway [4]. The authors showed that treatment with

agents that elevate endosomal pH inhibits entry, and cellular

tyrosine kinase activity is selectively required for efficient entry by

the low-pH, endocytic pathway [4].

Our results suggest that HSV-1 enters human keratinocytes

both by direct fusion of virions at the cell surface and by an

endocytic pathway. As dynamin is an important player during

endocytic uptake we addressed its impact during entry into

keratinocytes. Interestingly, dynamin inhibitors blocked infection

by interfering with penetration of the virions at the plasma

membrane which in turn inhibited both fusion at the plasma

membrane and vesicle formation. Furthermore, we provide the

first evidence that host cholesterol plays an important role during

entry into keratinocytes.

Results

Uptake of HSV-1 into human keratinocytes
We infected HaCaT cells representing undifferentiated human

keratinocytes, and primary human epidermal keratinocytes to

analyze the mode of virus uptake using electron microscopy. All

studies were performed with high MOI (200 or 1500 PFU/cell) to

achieve infection of all cells at rather high cell density. Primary

keratinocytes were cultured in calcium-reduced medium to

minimize cell-cell contacts and thereby enhance infectivity.

At 2 min p.i. most virions were observed at the cell surface of

HaCaT cells while 24% of the virus particles were internalized.

Interestingly, 5% were found in vesicles and 19% were

detectable as free capsids underneath the plasma membrane

(Fig. 1A, C). The same ratio of free capsids and enveloped

particles in vesicles was present in primary keratinocytes

although at much lower percentages suggesting that virus uptake

was initially delayed as compared to HaCaT cells (Fig. 1B, C). At

10 min p.i. the same quantity of either free capsids or of particles

in vesicles were observed in HaCaT cells while by 30 min p.i.

free capsids were more abundant than particles in vesicles

(Fig. 1C). In contrast, the percentage of free capsids in primary

keratinocytes was significantly lower than the percentages of

particles in vesicles at 10 and 30 min p.i. (Fig. 1C). The results

suggest that uptake of HSV-1 into keratinocytes can occur via

both direct fusion of the viral envelope with the plasma

membrane and via an endocytic pathway. Interestingly, the

ratio between the two uptake modes differed in primary cells

compared with HaCaT cells suggesting that endocytic uptake is

more pronounced in primary keratinocytes.

We assume that the free capsids observed in the cytoplasm at

2 min p.i. were released following very rapid fusion at the plasma

membrane. Many of the capsids observed at 2 and 10 min p.i.

were located just underneath a region of the plasma membrane

with a distinctive staining pattern resembling that of the viral

envelope (Fig. 1 A, b, c; B, b). This is highly suggestive of a direct

fusion process. However, some of the free capsids observed at 10

and 30 min p.i. might be released from endosomes.

Role of endocytic pathways
The potential role of endosomal HSV-1 uptake into keratino-

cytes was analyzed by inhibitor studies. Successful infection in

individual cells was visualized by staining with an antibody

directed against the viral immediate-early protein ICP0. The

cellular localization of ICP0 passes through distinct phases during

early infection, in which ICP0 in nuclear foci indicates an early

stage of viral gene expression followed by a cytoplasmic ICP0

relocalization [16]. Therefore, a reduction in the amount of

cytoplasmic ICP0 following drug treatment suggests delayed

infection, although we cannot exclude the possibility that any

one drug could have an effect on export of ICP0 from the nucleus.

Subconfluent cells were infected with 20 PFU/cell which led to

,80–90% of HaCaT cells and ,40–60% of primary keratinocytes

becoming infected based on ICP0 expression visualized at 2 h p.i.

When the microtubule-depolymerizing drug nocodazole which

inhibits trafficking from early to late endosomes [17], was added

prior to infection, the number of infected HaCaT cells was

reduced in a concentration-dependent manner from 83% to 58%.

The reduction was more marked when the MOI was lowered from

20 to 5 PFU/cell. In addition, the proportion of infected cells with

cytoplasmic ICP0 decreased from 40% to 6% (20 PFU/cell) in

drug-treated cells suggesting a delay of infection during the early

phase (Fig. 2A). When primary human keratinocytes were treated

with the same amounts of nocodazole, infection was reduced from

51% to 33% at 20 PFU/cell and from 42% to 15% at 5 PFU/cell

(Fig. 2B). Thus, our results support a role for trafficking via the

microtubule network in the entry pathway in keratinocytes.

However, this experiment does not distinguish between trafficking

of free capsids or trafficking of vesicles containing enveloped

particles from early to late endosomes.

Cells were treated with lysosomotropic agents to address the

impact of endosomal acidification during HSV-1 entry into

keratinocytes. While treatment of HaCaT cells with the carboxylic

ionophore monensin (40 mM) did not interfere with infectivity,

addition of the weak base ammonium chloride (NH4Cl) reduced

the level of infection from 87% to 47% of cells in a concentration-

dependent manner (Fig. 2C). In addition, the decrease in

cytoplasmic ICP0 localization in NH4Cl-treated HaCaT cells

suggested delayed early infection (Fig. 2C). In primary keratino-

cytes the concentration-dependent effect of NH4Cl was much

stronger. We observed a reduction in the number of infected cells

from 39% to 3% in the presence of 75 mM NH4Cl (Fig. 2D). In

contrast to HaCaT cells monensin-treatment of primary kerati-

nocytes also decreased the number of infected cells from 45% to

26% (Fig. 2D). There was a concomitant reduction in the number

of infected cells with cytoplasmic ICP0 in all drug-treated primary

cells. Taken together, the results demonstrate that NH4Cl

produced a limited and monensin no reduction in virus infectivity

in HaCaT cells, while both agents had much greater effects in

primary keratinocytes.

Control experiments indicated that the reduction in infectivity

by NH4Cl was reversible when the weak base was removed just

prior to infection (data not shown). Based on DAPI staining of the

cell nucleus, the chromatin seemed to be changed in the presence

of NH4Cl. To exclude the possibility that the observed effects were

due to a transcriptional block, GFP-expressing plasmids were

transfected which demonstrated unchanged GFP expression in

NH4Cl-treated HaCaT cells (data not shown). Furthermore, we

analyzed the localization of HSV-1 in NH4Cl-treated primary

keratinocytes to confirm that the elevated pH in intracellular

compartments interferes with the delivery of capsids to the nuclear

periphery as recently described [4]. Since in untreated control cells

nuclear accumulation of newly synthesized capsid protein VP5 was

Entry of HSV-1 into Human Keratinocytes
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observed already early during infection, we inhibited protein

expression by cycloheximide to visualize input capsids in close

proximity to the nucleus (Fig. 3). In contrast, input capsids were

widely dispersed in NH4Cl-treated cells and localized only rarely

to the nuclear periphery (Fig. 3). In summary, we conclude that

endosomal acidification contributes to HSV-1 infection of HaCaT

cells and may play a more prominent role in primary

keratinocytes.

To gain further insights into potential endocytic pathways,

keratinocytes were treated with chlorpromazine which leads to

misassembly of clathrin-coated pits by inhibiting the assembly of

the clathrin adaptor protein AP2 [18]. Since treatment of HaCaT

cells with 28 mM chlorpromazine had no influence on infectivity

(Fig. 2E), we infer that clathrin-mediated endocytosis does not

contribute to HSV-1 entry. We then treated HaCaT cells with the

sodium-proton exchange inhibitor 5-(N-Ethyl-N-isopropyl)amilor-

Figure 1. Uptake of HSV-1 into human keratinocytes. (A) HaCaT cells or (B) primary human keratinocytes (phK) were incubated with HSV-1 at
200 PFU/cell (A, a, b), or 1500 PFU/cell (A, c, d; B, a–d) for 1 h at 4uC to allow attachment followed by incubation at 37uC to allow uptake. Cells were
fixed and prepared for electron microscopy at 2, 10, or 30 min p.i. (A, B) Particles on the cell surface (a), free cytoplasmic capsids (b, c) and enveloped
particles in vesicles (d) are shown at 2 and 10 min p.i. Bar, 0.2 mm. (C) In two independent experiments 133, 138, and 109 particles in total were
evaluated at 2, 10, and 30 min, respectively, in HaCaT cells, and 159 (at 2 min) and 254 (at 10 min) were analyzed in primary human keratinocytes.
The percentages of particles on the surface, cytoplasmic capsids and enveloped particles in vesicles are given at 2, 10, and 30 min p.i. Results are
mean 6 standard deviation values. In primary keratinocytes 58 particles in total were analyzed in one experiment at 30 min p.i.
doi:10.1371/journal.pone.0025464.g001
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ide (EIPA) which is used as specific inhibitor of macropinocytosis

[19]. The number of infected cells dropped from 90% to 61%

when 75 mM EIPA was added prior to infection (Fig. 2E). Recent

studies indicate that EIPA has significant effects on various

endocytic processes such as relocalization of early and late

endosomes [20]. Thus, the reduction in infectivity caused by

Figure 2. HSV-1 infection of keratinocytes pretreated with inhibitors against microtubules, actin, clathrin, sodium/proton
exchanger or with lysosomotropic agents. HaCaT cells or primary human keratinocytes were pretreated with the indicated concentrations of
drugs or corresponding solvent controls (C) for 30 min followed by infection with HSV-1 in the presence of the drugs. All infections were at 20 PFU/
cell apart from the nocodazole (noc)-treated cells which were infected both at 20 and 5 PFU/cell. All cells were fixed at 2 h p.i. and stained with
mouse anti-ICP0. The number of ICP0-expressing cells was determined in at least three independent experiments. The location of ICP0 expression
was recorded as only in the nucleus (nuclear ICP0) or in both nucleus and cytoplasm (cytoplasmic ICP0) representing early and early-late phases
during infection, respectively. The percentages of infected cells are shown after treatment with nocodazole (noc) in panels A and B, with NH4Cl and
monensin (mon) in C and D, and with chlorpromazine (CPZ), EIPA and cytochalasin D (CD) in E and F. Results are mean 6 standard deviation values.
P-values (pair-t-test) are given above the diagram (B, D).
doi:10.1371/journal.pone.0025464.g002
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EIPA may simply reflect the interference with an endocytic

pathway. Since macropinosome formation involves filamentous

actin (F-actin), keratinoyctes were treated with cytochalasin D

(CD) which blocks actin polymerization at the barbed ends of F-

actin. In both HaCaT cells and primary keratinocytes CD

treatment did not reduce the number of infected cells, although,

early infection seemed to be delayed in a concentration-dependent

manner (Fig. 2E, F). These results suggest that macropinocytosis is

not favored during HSV-1 entry into either HaCaT cells or

primary keratinocytes.

In summary, the inhibitor studies suggest that the microtubule

network and endosomal acidification contribute to the HSV-1

entry pathway in keratinocytes. The ion-transport inhibitor EIPA

had some inhibiting effect on infectivity whereas disassembly of

actin filaments correlated with only a minor effect on infection

which does not support a major role for the macropinocytic

pathway but indicates involvement of other endocytic processes.

Taking these results together we conclude that endocytic pathways

play a role during HSV-1 entry into keratinocytes.

Impact of cholesterol
Many endocytic pathways require cholesterol-rich lipid rafts for

their function. The essential role of cholesterol for HSV-1 entry

into Vero cells and mouse melanoma cells expressing either

nectin-1 or HVEM has been shown [21]. We treated keratinocytes

with methyl-b-cyclodextrin (MbCD) which depletes cholesterol

from the plasma membrane to address the requirement for

cholesterol for HSV-1 entry in keratinocytes [22,23,24]. The

functionality of MbCD in keratinocytes was initially confirmed by

visualizing the uptake of cholera toxin B, a glycosphingolipid-

binding ligand that is known to be internalized by caveolae-

mediated and lipid-raft-dependent endocytosis [25,26]. When

HaCaT cells were pretreated with 15 mM MbCD for 30 min

cholera toxin B uptake was efficiently blocked as visualized by the

loss of cytoplasmic cholera toxin B (Fig. 4D). Upon HSV-1

infection a concentration-dependent inhibition of infectivity was

visible in both MbCD-treated HaCaT cells and primary

keratinocytes. Upon pre-treatment with 10 mM MbCD the

number of infected cells was reduced from 88% to 16% in

HaCaT cells and from 64% to 22% in primary keratinocytes

(Fig. 4B). Prior to infection MbCD was removed to avoid any

depleting effect on cholesterol in the viral envelope. Control

experiments indicate that preincubation of HSV-1 particles with

10 mM MbCD reduced infectivity (Fig. 4A). This observation is in

agreement with previous results demonstrating a reduced infection

rate of pseudorabies virus (PrV) when viral cholesterol was

depleted with MbCD [27]. When 10 mM MbCD was added to

the cells at 1 h p.i., we observed no effect on the number of

infected cells (Fig. 4C) suggesting that depletion of cholesterol in

the plasma membrane interferes directly with HSV-1 uptake and

that MbCD does not disturb subsequent steps during early

infection. In addition, we addressed whether cholesterol depletion

was reversible by giving 50 or 200 mg/ml cholesterol to MbCD-

treated cells. Following infection we observed a concentration-

dependent increase in infectivity (Fig. 4C) demonstrating that

replenishment of cholesterol restored infectivity.

When filipin which binds cholesterol was used, we observed a

reduction in the number of infected primary keratinocytes,

however, no effect was visible in HaCaT cells (data not shown).

Since filipin also failed to inhibit cholera toxin B uptake into

HaCaT cells we conclude that filipin insufficiently sequestered

cholesterol in these cells.

Taken together, these results indicate that cholesterol in the

plasma membrane is required for HSV-1 uptake into keratinocytes.

Impact of dynamin
The GTPase dynamin controls several distinct endocytic

pathways [11]. To determine the role of dynamin during HSV-1

uptake, we performed overexpression, RNA interference and

inhibitor studies. To overexpress the dominant-negative dynamin

mutant K44A [28], HaCaT cells were transfected with plasmids

expressing either the GFP-tagged dynamin mutant or GFP alone

followed by infection. At 2 h p.i. we observed a reduced number of

infected cells in the presence of the overexpressed dynamin

mutant. Whereas 78% of the GFP-expressing cells became

infected, the presence of the overexpressed dominant-negative

dynamin mutant reduced the number of infected cells to 16%

(Fig. 5A, B). In contrast, overexpression of wt dynamin had no

inhibitory effect (data not shown).

In keratinocytes the ubiquitously expressed dynamin 2 is

present, while dynamin 1 expression is restricted to neurons and

dynamin 3 is expressed in lung, heart, brain and testis. When we

reduced dynamin 2 expression in HaCaT cells, almost no effect on

infection was observed (data not shown). Since dynamin 2

expression was only reduced by ,80% after silencing, we

conclude that the residual amount of dynamin 2 was still sufficient

to allow viral entry.

Figure 3. Localization of HSV-1 particles in NH4Cl-treated primary human keratinocytes cells. Untreated cells (control) or cells pretreated
with 75 mM NH4Cl were incubated with 100 PFU/cell of HSV-1 for 2 h at 4uC followed by incubation at 37uC. After 2 h at 37uC cells were either
treated with 0.1 mM cycloheximide or medium was replaced. After 5 h at 37uC cells were fixed and stained with mouse anti-VP5, visualized with
AF488-conjugated antimouse (Molecular Probes). Confocal projections are shown and nuclei stained with 49, 69-diamidino-2-phenylindole (DAPI) are
circled. Bar, 8 mm.
doi:10.1371/journal.pone.0025464.g003
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To further analyze the impact of dynamin we pretreated

keratinocytes with dynasore, a small molecule inhibitor of the

dynamin GTPase activity [29]. As a control we confirmed that

dynamin-dependent transferrin uptake was blocked in HaCaT

cells pretreated with 40 mM dynasore (Fig. 6A) [30,31]. When

dynasore was added either to HaCaT cells or primary keratino-

Figure 4. HSV-1 infection of keratinocytes upon depletion of cholesterol. (A) HaCaT cells were infected with HSV-1 pretreated with MbCD
(10 mM) for 30 min at room temperature or with untreated HSV-1 at 20 PFU/cell. (B) HaCaT cells or primary human keratinocytes were pretreated
with the indicated concentrations of MbCD for 30 min at 37uC. After washing with medium cells were infected with HSV-1 at 20 PFU/cell. As a control
(C), cells were infected in the absence of the drug. (C) HaCaT cells were infected with HSV-1 at 20 PFU/cell. At 1 h p.i. 5 or 10 mM MbCD was added to
the cells. In addition, HaCaT cells were pretreated with 10 mM MbCD for 30 min, and 0, 50 or 200 mg/ml cholesterol was added prior to infection. (A,
B, C) At 2 h p.i. cells were fixed, stained with mouse anti-ICP0 and the number of ICP0-expressing cells was determined in at least three independent
experiments. Results are mean 6 standard deviation values. (D) HaCaT cells were untreated or pretreated with 15 mM MbCD for 30 min and AF594-
conjugated cholera toxin B (CT-B) (5 mg/ml) was added. Cells were fixed and stained with DAPI. Bar, 20 mm.
doi:10.1371/journal.pone.0025464.g004
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cytes a concentration-dependent inhibition of HSV-1 infection

was observed. However, while 20 mM dynasore almost completely

blocked infection of HaCaT cells (Fig. 6C, D), 80 mM dynasore

was needed to produce the same level inhibition in primary

keratinocytes (Fig. 6E, F). When dynasore (80 mM) was washed out

prior to infection, no inhibitory effect on the number of infected

cells was observed (data not shown). In contrast to keratinocytes,

no inhibitory effect was detectable when murine hippocampal

primary neurons were pretreated with up to 80 mM dynasore

(Fig. 6G). These results suggest that dynamin is essential for HSV-

1 entry into keratinocytes but does not play a role during entry into

neurons.

To exclude any direct effects of dynasore on virus particles, we

analyzed the infectivity of dynasore pretreated virions. No

difference in the number of infected cells was visible when HaCaT

cells were infected with untreated or dynasore-pretreated particles

(Fig. 6B) confirming that dynasore interfered only with cellular

functions. As a further control to rule out possible adverse actions

of dynasore itself, we analyzed the effect of MiTMAB, a surface-

active inhibitor that blocks dynamin’s interactions with phospho-

lipids [32]. Upon pre-treatment of HaCaT cells with MiTMAB

(1–20 mM) a concentration-dependent inhibition of infection was

detectable which was comparable to the effects observed in

dynasore-treated cells (data not shown).

EM studies were performed to determine how dynasore affected

the uptake mechanisms during HSV-1 entry into keratinocytes. As

a precondition for the EM studies we tested whether dynasore

blocked infection at the high MOIs needed for EM analysis of

incoming virus particles. Infection studies with 1500 PFU/cell

showed that 120 mM dynasore still blocked infection, while

DMSO alone had no effect (Fig. 7B). As expected, the patterns

of virus uptake at 10 min p.i. in cells pretreated with DMSO were

comparable with those shown for untreated cells with both free

capsids and particles in vesicles being observed in the cytoplasm

(Fig. 7A a–b, D a–b). In contrast, when primary keratinocytes were

pretreated with dynasore we observed virus particles almost

exclusively on the outside of the cells at both 10 and 30 min p.i.

(Fig. 7A e–h). These particles were predominantly located in

invaginations at the plasma membrane, unlike particles that were

attached to the cell surface upon incubation for 1 h at 4uC (Fig. 8A

c–d). Quantification revealed that there was no increase in the low

number of internalized particles in dynasore-treated cells between

10 and 30 min p.i. by which time about 81% of the observed

particles had been taken up in control cells (Fig. 7C). Surprisingly,

the few internalized particles in dynasore-treated cells included

both free capsids underneath the plasma membrane and

enveloped particles in vesicles. Dynasore has been reported to

stabilize pit formation at the plasma membrane at early and late

stages [29]. Therefore, we had assumed that the uptake of particles

via fusion of their envelopes with the plasma membrane would not

be blocked in dynasore-treated keratinocytes. Since cytoplasmic

capsids were more often found in infected HaCaT cells than in

primary keratinocytes, we looked for the presence of free capsids in

dynasore-treated HaCaT cells at 10 min p.i., by which time

approximately 20% of particles in untreated cells would be free

capsids in the cytoplasm (Fig. 1C). Surprisingly, as in primary

keratinocytes, virus particles were only found on the cell surface in

invaginations of the plasma membrane (Fig. 7D, E). Thus, we

conclude that dynasore blocks both modes of uptake fusion with

the plasma membrane and endocytosis.

Using a recently established protocol for ex vivo infection of

murine epidermal sheets [16], we investigated whether infection of

a target tissue is also dynamin-dependent. Skin from the backs of

newborn mice was prepared, and the epidermis was separated

from the dermis by dispase treatment. The epidermal sheets were

allowed to float on virus-containing medium supplemented with

DMSO alone, or with 40 or 120 mM dynasore. At 3 h p.i.

costaining of keratin 14 and ICP0 revealed infection throughout

the basal layer of keratinocytes in the DMSO-treated epidermis

(Fig. 8). In contrast, infection was blocked in a concentration-

dependent manner when the epidermal sheets were pretreated

with dynasore (Fig. 8). These results support the essential role of

dynamin for HSV-1 entry into basal keratinocytes of the

epidermis.

In summary, we conclude that dynamin plays an essential role

during HSV-1 uptake into keratinocytes.

Discussion

HSV-1 can use a variety of entry modes all depending on a set

of envelope viral glycoproteins [1]. Whether the virus can

Figure 5. HSV-1 infection of HaCaT cells transfected with the dynamin1 mutant K44A. (A) Cells were transfected with plasmids either
expressing the green-fluorescent protein (control) or the green-fluorescent protein fused to the dominant-negative dynamin1 mutant (K44A). At 22 h
posttransfection the cells were infected with HSV-1 (50 PFU/cell). At 2 h p.i. cells were fixed and stained with mouse anti-ICP0 (red) visualized with
AF555-conjugated anti-mouse (Molecular Probes). Bar, 40 mm. (B) The number of ICP0-expressing cells per K44A-expressing cell was determined in
three independent experiments. As a control, the number of infected cells that were expressing eGFP is shown. The percentages of infected cells that
were expressing the indicated plasmids are given. Results are mean 6 standard deviation values.
doi:10.1371/journal.pone.0025464.g005
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accomplish more than one entry pathway to infect any particular

target cell, is still unclear. In this study, we investigated the entry

pathway(s) into human keratinocytes which represent one of the

natural target cells for HSV-1. Initial EM studies revealed free

capsids underneath the plasma membrane in addition to

enveloped virus particles in vesicles suggesting that HSV-1 can

enter keratinocytes both by fusion with the plasma membrane and

by endocytosis. The challenge is to distinguish whether both or

only one of these entry pathways led to productive infection. We

initially investigated the impact of endocytic uptake for initiation

of infection using a variety of pharmacological inhibitors. In

general, the major advantage of pharmacological inhibitors is the

short exposure time that delays compensatory responses of the

cells. However, the poor specificity of many commonly used drugs

can hamper the identification of the precise endocytic pathway

involved in virus uptake since they may perturb multiple cellular

processes. To minimize this problem we used a range of drugs at

concentrations that have been shown to interfere with virus uptake

without major side effects. We confirmed that the concentrations

of the drugs used in our assays had neither cytotoxic effects nor

caused morphological changes in keratinocytes. Our data support

endocytic uptake as contributing to HSV-1 entry, although, we are

only just beginning to identify the components which characterize

the route(s) of uptake.

Our studies in chlorpromazine treated cells showed no effect on

the number of infected cells and suggest that clathrin-mediated

endocytosis does not play a role in HSV-1 entry into keratinocytes.

In contrast, we observed a decreased number of infected cells after

treatment with EIPA. EIPA can inhibit the enhanced fluid phase

uptake that is associated with particle invagination during

macropinocytosis [19]. Macropinocytosis is utilized for entry by

a number of pathogens [33,34], and has been suggested to be

involved in Kaposi’s sarcoma-associated herpesvirus entry [35].

To further examine the putative role of macropinocytosis in HSV-

1 entry we investigated the role of F-actin which is mostly

associated with macropinocytic activity using cytochalasin D [33].

Since interference with actin polymerization had only minor

effects on infection, our inhibitor studies do not support

macropinocytosis as a major uptake mechanism in keratinocytes.

This is in line with our previous findings that HSV-1 entry into

keratinocytes is independent of Rac1 signaling [16] which

participates in the regulation of macropinosome formation [33].

Based on reports showing that EIPA mediates a number of effects

on endocytic pathways [20,36], we conclude that the inhibitory

effect of EIPA points in general to the involvement of endocytic

uptake but not to macropinocytosis specifically.

A decreased number of infected cells was observed when we

analyzed the effects of the microtubule-disrupting agent nocoda-

zole in both HaCaT cells and primary keratinocytes. The

importance of the microtubule network for the transport of

capsids to the nucleus during HSV-1 entry has been shown

previously [37]. Concomitantly, endosomal trafficking also relies

on the integrity of the microtubule network [38]. Thus, our studies

support a role for microtubules during HSV-1 entry into

keratinocytes but do not distinguish between one initiated by

fusion with the plasma membrane and releasing capsids into the

cytosol or one involving endocytic uptake and vesicle transport.

It has previously been reported that endosomal acidification is

required to release HSV-1 after endocytic uptake in keratinocytes

[4]. We also observed that lysosomotropic agents such as NH4Cl

and monensin reduced infection in primary keratinocytes.

However, although NH4Cl also reduced infectivity in the

keratinocyte cell line HaCaT, only minor effects were observed

with monensin. These studies suggest that endosomal acidification

plays a more prominent role in primary keratinocytes. This is in

line with our EM studies which showed that more virus particles

were found in vesicles than as free capsids in primary cells as

compared to HaCaT cells. Although our results are consistent with

the previously described effect of NH4Cl, they differ from those

described for monensin [4] which may be explained by the

different experimental setting.

Taken together our inhibitor studies support pH-dependent

endocytic pathway(s) as a route for HSV-1 uptake into

keratinocytes leading to productive infection. Interestingly,

endocytic uptake seems to be more pronounced in primary

keratinocytes than in the keratinocyte cell line highligthing the

importance of carrying out studies in primary cells. Although our

EM studies suggest that uptake of HSV-1 by fusion with the

plasma membrane occurs alongside endocytosis, it remains to be

determined whether and to what extent the direct fusion pathway

leads to successful infection. The observation that the inhibitors of

endocytosis never blocked infection completely but only reduced

the number of infected cells or simply delayed infection may be an

early indication that fusion at the plasma membrane can also lead

to infection.

Our studies revealed a requirement for cholesterol for HSV-1

uptake in keratinocytes. The depletion of cholesterol from the

plasma membrane by MbCD resulted in inhibition of infectivity

which was slightly stronger in HaCaT cells than in primary

keratinocytes. The availability of cholesterol may be different in

primary keratinocytes and HaCaT cells. The requirement for

cholesterol suggests that lipid rafts may play an essential function

in HSV-1 uptake into keratinocytes. Recent studies suggest that

lipid rafts act as platforms for HSV-1 entry into Vero cells and

mouse melanoma cells expressing either nectin-1 or HVEM

involving the interaction of gB with cellular components in the

rafts [21]. Interestingly, the HSV-1 receptors nectin-1 and HVEM

were not found to be associated with lipid rafts when expressed in

mouse melanoma cells. Thus, Bender et al. [21] argued that

cholesterol may be required for fusion with the plasma membrane

independent of whether the virus receptors are present in lipid

rafts or not. Whether nectin-1, a potential HSV-1 receptor in

HaCaT cells [39] is localized to lipid rafts in human keratinocytes,

is still unknown. Our results suggest that cholesterol is essential

during HSV-1 uptake into keratinocytes and we hypothesize that

cholesterol supports both fusion with the plasma membrane and

endocytic uptake.

In addition to cholesterol our studies demonstrate the essential

role of dynamin during HSV-1 entry into keratinocytes. Dynasore,

a specific inhibitor of the dynamin GTPase activity [29,40],

Figure 6. HSV-1 infection of dynasore-treated cells. All pretreatments with DMSO or dynasore were carried out for 30 min at 37uC. (A) HaCaT
cells were pretreated with 0.4% DMSO or 40 mM dynasore and 50 mg/ml AF488-conjugated transferrin (Tfn) (green) was added for 15 min. Cells were
fixed and stained with DAPI. Confocal projections are shown. Bar, 40 mm. (B) HSV-1 pretreated with DMSO (0.4%) or dynasore (40 mM) was used to
infect HaCaT cells at 20 PFU/cell. (C, D) HaCaT cells, (E, F) primary human keratinocytes, or (G) primary hippocampal neurons were pretreated with
DMSO or the indicated concentrations of dynasore followed by infection with HSV-1 at 20 PFU/cell. (B–G) At 2 h p.i. cells were fixed and costained
with DAPI and mouse anti-ICP0 (green). Overlays of immunofluorescence analyses are shown. Bar, 80 mm. The number of ICP0-expressing cells was
determined in (D) HaCaT cells, and (F) primary human keratinocytes in at least three independent experiments. Results are mean 6 standard
deviation values.
doi:10.1371/journal.pone.0025464.g006
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blocked HSV-1 infection in HaCaT cells at low concentrations.

Interestingly, we observed that infection of primary keratinocytes

was less sensitive to dynasore inhibition, requiring levels four times

higher to achieve a reduction comparable to that seen in HaCaT

cells. This was unexpected since we supposed a more prominent

role of endocytic uptake in primary cells, and expected dynamin to

be involved in endocytic pathways. The high amount of dynasore

was also tested in primary murine neurons where no effect on

HSV-1 infection was observed. In principle, dynasore can block

endocytic pathways in hippocampal neurons [41]. Thus, dynamin

seems to be nonessential for HSV-1 entry into neurons, but plays a

major role during the uptake mechanism(s) into keratinocytes. We

also examined the requirement for dynamin in murine epidermis

using an ex vivo infection assay. After treatment of epidermal sheets

with dynasore we observed a block of ICP0 expression in the basal

keratinocytes suggesting that dynamin also plays a role during

entry of the virus into intact tissue. EM studies in primary

keratinocytes and HaCaT cells confirmed that neither free capsids

nor enveloped particles in vesicles were present inside dynasore-

treated cells. The only particles seen were enveloped virions

trapped in plasma membrane invaginations at the cell surface.

These results suggest that HSV-1 entry is completely dependent on

dynamin-mediated pathway(s) which appear to include both early

fusion events at the plasma membrane and vesicle scission. HIV,

another enveloped virus, has long been assumed to fuse directly at

the plasma membrane. Recent findings support HIV entry via

endocytosis and suggest a role of dynamin in HIV release from

endosomes [42]. The authors argue that the dynamin-dependent

fusion with endosomes could rely on the ability of dynamin to

regulate actin remodeling and/or associate with membrane-

bending proteins which might facilitate endosomal fusion [42].

However, a recent study suggests a role of dynamin in pore

expansion following hemifusion [15] which provides a possible

reason why HSV-1 fusion at the plasma membrane was blocked

Figure 7. Uptake of HSV-1 into dynasore-treated keratinocytes. Primary human keratinocytes and HaCaT cells were pretreated with 120 or
80 mM dynasore, and correspondingly with 1.2% or 0.8% DMSO for 30 min at 37uC followed by 15 min at 4uC to precool the cells. Cells were
incubated with HSV-1 (1500 PFU/cell) for 1 h at 4uC followed by incubation at 37uC. (A) Infected primary human keratinocytes were fixed and
prepared for electron microscopy at 10 min (a, b, e, f), or 30 min at 37uC (g, h). As control, DMSO-pretreatd cells were incubated with HSV-1
(1500 PFU/cell) for 60 min at 4uC (c, d). Bar, 0.2 mm. (B) At 2 h at 37uC infected primary human keratinocytes were fixed and costained with TRITC-
phalloidin (red) to visualize F-actin and mouse anti-ICP0. Single immunofluorescence analyses are shown. Bar, 40 mm. (C) Percentages of particles on
surface, and particles inside including free cytoplasmic capsids and enveloped particles in vesicles are shown in DMSO- or dynasore-treated primary
keratinocytes at 10 and 30 min at 37uC. In two independent experiments 108 (DMSO) and 122 (Dynasore) particles in total were evaluated for the
10 min time point and in one experiment 52 (DMSO) and 62 (Dynasore) particles were analyzed for the 30 min time point. (D) Infected HaCaT cells
pretreated with DMSO or dynasore were fixed and prepared for electron microscopy at 10 min at 37uC (a–c). Bar, 0.2 mm. (E) Percentages of particles
on surface, and particles inside are shown in DMSO- or dynasore-treated HaCaT cells at 10 min at 37uC. In two independent experiments 78 (DMSO)
and 76 (Dynasore) particles in total were evaluated. Results are mean 6 standard deviation values.
doi:10.1371/journal.pone.0025464.g007

Figure 8. HSV-1 infection of murine epidermis pretreated with dynasore. Epidermal sheets prepared from newborn mouse skin were
separated from dermis by dispase II treatment, followed by incubation on 40 or 120 mM dynasore-containing medium or DMSO-containing medium.
After 1 h at 37uC HSV-1 was added at 100 PFU/cell. At 3 h p.i. epidermal whole mounts showing the basal keratinocyte layer and developing hair
follicles were costained with mouse anti-ICP0 (red) and rabbit anti-keratin 14 (green) visualized with AF555-conjugated anti-mouse (Molecular
Probes) and AF488-conjugated anti-rabbit (Molecular Probes), respectively. Single immunofluorescence analyses are shown. Bar, 80 mm.
doi:10.1371/journal.pone.0025464.g008
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by dynasore. Probably, we are only at the beginning of

understanding the precise mechanisms underlying dynamin

function during viral uptake and that its role is more diverse than

presently perceived.

In summary, we suggest that HSV-1 uptake into human

keratinocytes involves endocytic pathway(s) and fusion at the

plasma membrane, and that both routes are dynamin-mediated

and cholesterol-dependent. To understand the underlying mech-

anisms it will be important to characterize the contribution of

nectin-1 and other HSV-1 receptors in human keratinocytes.

Methods

Cells, viruses, and plasmids
HaCaT cells [43] were maintained in DMEM (Invitrogen)

containing 10% fetal calf serum (FCS) and penicillin (100 IU/ml),

streptomycin (100 mg/ml). Primary human foreskin keratinocytes

were prepared and cultured on feeder layers as described [44]. In

brief, primary human keratinocytes were maintained in keratino-

cyte culture medium (Ham’s F12-DMEM (1:3); Invitrogen)

containing 1.8 mM calcium ions and 10% FCS, penicillin

(100 IU/ml), streptomycin (100 mg/ml), adenine (1.861024 M),

glutamine (2 mM), hydrocortisone (0.5 mg/ml), epidermal growth

factor (EGF 10 ng/ml), cholera enterotoxin (1025 M), insulin

(5 mg/ml) in the presence of mitomycin C treated 3T3 fibroblasts,

strain J2. DMEM/Ham’s F-12 (Biochrom) containing 50 mM

calcium and 10% calcium-free FCS was used as keratinocyte

culture medium to maintain the primary cells under calcium-

reduced conditions.

Hippocampal murine neuron cultures were prepared as

described [45]. In brief, hippocampi were dissected from

embryonic day 9 mice. After treatment with 0.1% trypsin and

150 mg/ml DNAse for 30 min at 37uC, cell suspensions were

mechanically dissociated by pipetting and finally centrifuged at

400 g for 5 min. About 20,000 cells were plated on poly-lysine

coated coverslips in B27 neurobasal medium supplemented with

1% L-glutamine. Cultures were maintained for about 10 days

before infection.

Murine epidermal sheets were taken from back skin of wild-type

(C57BL6) newborn mice. At 3 days after birth mice were

decapitated and skin pieces of about 15 mm diameter were taken.

After incubation for 30 min at 37uC with 5 mg/ml dispase II

(Roche) in PBS, the epidermis was washed three times in PBS,

gently removed from the underlying dermis as an intact sheet

using forceps, and used immediately for infection studies.

Infection studies were performed with purified preparations of

HSV-1 wildtype strain 17 as described [46]. In general, virus

inoculum was added to the cells at 37uC defining time point 0. In

addition, virus was preadsorbed for 1 or 2 h at 4uC as indicated.

Virus titers were determined on Vero cells. Pretreatment of virus

with 40 mM dynasore or 10 mM MbCD was performed for

30 min at 37uC or room temperature, respectively.

The expression vector encoding eGFP-tagged dynamin1 mutant

K44A was obtained from Harvey McMahon (MRC, Cambridge).

Plasmid EGFP-C1 (Clontech) was used as control.

Ethics statement
The preparation of neuronal cells and epidermal sheets from

sacrificed animals was carried out in strict accordance with the

recommendations of the Guide of Landesamt für Natur, Umwelt

and Verbraucherschutz, Nordrhein-Westfalen (Germany). The

study was approved by LANUV NRW (Number 8.84-

02.05.20.11.058).

Inhibitor studies
Cytochalasin D and nocodazole (Sigma), and the dynamin

inhibitors dynasore (Tocris) and MiTMAB (Calbiochem) were

dissolved in dimethyl sulfoxide (DMSO). Methyl-b-cyclodextrin

(MbCD) (Sigma) and chlorpromazine (Sigma) were dissolved in

water; monensin (Sigma) and 5-(N-Ethyl-N-isopropyl)amiloride

(EIPA) (Sigma) were dissolved in ethanol. Cells were treated with

the appropriate drugs for 30 min followed by infection at 37uC in

the continued presence of the drug. Only MbCD was removed

prior to infection by washing the cells with medium three-times.

Cholesterol (Sigma) was used to replenish depleted cholesterol in

the plasma membrane; cells pretreated with MbCD for 30 min at

37uC were washed three-times, and cholesterol was added for

30 min at 37uC followed by three further washing steps prior to

infection. Alexa Fluor 594-conjugated cholera toxin B (Molecular

Probes) served as control for the cholesterol-depleting function of

MbCD; cells pretreated with MbCD for 30 min at 37uC were

washed and incubated for 15 min at 4uC. After addition of AF594-

conjugated cholera toxin B, cells were incubated for 10 min at 4uC
followed by 10 min at 37uC and fixation. AF488-conjugated

transferrin (Molecular Probes) was used as a control for dynasore

inhibition. Transferrin was added to dynasore-treated or untreated

cells for 15 min at 37uC, and removed from the cell surface prior

to fixation by washing with 0.1 M glycine, 150 mM NaCl (pH 2.5)

prior to fixation [47].

Transient expression
For transfection, HaCaT cells were trypsinized, pelleted,

washed with PBS and resuspended in Nucleofector solution V

(Amaxa). Cells (,16106) were transfected with 2 or 4 mg of

plasmid in a cuvette, utilizing program U-20 of an Amaxa

Nucleofector I. Cells were seeded on coverslips and infected at

22 h posttransfection at 50 PFU/cell for 2 h.

Immunocytochemistry and antibodies
HaCaT cells and primary keratinocytes grown on coverslips

were fixed with 2% formaldehyde in PBS, permeabilized with

0.5% NP-40 and stained. At 2 h p.i. infected cells were visualized

by ICP0 staining with mouse anti-ICP0 (monoclonal antibody

11060) [48], diluted 1:60. Capsid protein VP5 was visualized with

monoclonal antibody DM165 [49], diluted 1:200. For immuno-

staining of epidermal wholemounts, murine epidermis was fixed

with 3.4% formaldehyde for 2 h, washed two times with PBS,

blocked with 0.5% milk powder, 0.25% gelatin from cold water

fish skin, 0.5% Triton X-100 in 0.2% PBS-Tween 20 for 1 h, and

then incubated overnight with mouse anti-ICP0 (monoclonal

antibody 11060) [48] diluted 1:60 and rabbit polyclonal anti-

mouse keratin 14 (AF64, Covance) diluted 1:100,000 followed by

overnight incubation with secondary antibodies at room temper-

ature. Staining of F-actin was performed with tetramethylrhoda-

mine isothiocyanate (TRITC)-conjugated phalloidin (Sigma).

Microscopy was performed using a Zeiss Axiophot, a Zeiss LSM

510 and a Leica DM IRB/E microscope linked to a Leica TCS-

SP/5 confocal unit. Images were aquired using Adobe Photoshop,

version CS2.

The effects of dynamin1 mutant K44A were quantified by

counting about 300 transfected cells visualized by GFP fluores-

cence in three independent experiments and calculating the

number of infected cells visualized by ICP0 staining.

Electron microscopy
Infected cells were prepared for electron microscopy as

described [50]. Thin sections were cut, stained with uranyl acetate
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and lead citrate, and analyzed in a JEOL 1200 EX II transmission

electron microscope. For quantification we examined sections of

0.1 mm. In each section we analyzed 80–100 cells with every third

cell showing at least one virus particle. For each time point and

experiment sections of about 30 cells with 60–90 virus particles in

total were evaluated.
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