20 research outputs found

    Nuclear matter at high density: Phase transitions, multiquark states, and supernova outbursts

    Full text link
    Phase transition from hadronic matter to quark-gluon matter is discussed for various regimes of temperature and baryon number density. For small and medium densities, the phase transition is accurately described in the framework of the Field Correlation Method, whereas at high density predictions are less certain and leave room for the phenomenological models. We study formation of multiquark states (MQS) at zero temperature and high density. Relevant MQS components of the nuclear matter can be described using a previously developed formalism of the quark compound bags (QCB). Partial-wave analysis of nucleon-nucleon scattering indicates the existence of 6QS which manifest themselves as poles of PP-matrix. In the framework of the QCB model, we formulate a self-consistent system of coupled equations for the nucleon and 6QS propagators in nuclear matter and the G-matrix. The approach provides a link between high-density nuclear matter with the MQS components and the cumulative effect observed in reactions on the nuclei, which requires the admixture of MQS in the wave functions of nuclei kinematically. 6QS determine the natural scale of the density for a possible phase transition into the MQS phase of nuclear matter. Such a phase transition can lead to dynamic instability of newly born protoneutron stars and dramatically affect the dynamics of supernovae. Numerical simulations show that the phase transition may be a good remedy for the triggering supernova explosions in the spherically symmetric supernova models. A specific signature of the phase transition is an additional neutrino peak in the neutrino light curve. For a Galactic core-collapse supernova, such a peak could be resolved by the present neutrino detectors. The possibility of extracting the parameters of the phase of transition from observation of the neutrino signal is discussed also.Comment: 57 pages, 22 figures, 7 tables; RevTeX 4; submitted to Phys. Atom. Nuc

    Palaeoceanographic controls on spatial redox distribution over the Yangtze Platform during the Ediacaran–Cambrian transition

    Get PDF
    The Ediacaran–Cambrian interval was an eventful transitional period, when dynamic interactions between the biosphere and its physical environment allowed the Earth System to cross into a new state, characterized by the presence of metazoans, more equable climates and more expansive oxygenation of the oceans. Due to the retreat of widespread sulphidic conditions, redox-sensitive trace-metals could accumulate to a greater extent in ‘black shales’ deposited in localised anoxic/euxinic environments, such as highly productive ocean margins. This study investigates the concentrations of the redox-sensitive trace-metals molybdenum and vanadium in organic-rich sedimentary rocks from seven sections of the Yangtze platform, slope and basin. Iron speciation analyses were carried out in order to distinguish oxic, anoxic-ferruginous and anoxic-sulphidic settings, while sulphur and nitrogen isotope ratios were measured to gain insight into sulphate and nitrate availability, respectively, in the context of changing redox conditions. The data herein demonstrate an overall increase in redox-sensitive trace-metal contents in black shales across the Ediacaran–Cambrian transition, but with marked temporal and spatial variability. Euxinia is evident in South China before 551 Ma in the Ediacaran, and again in the early Cambrian. However, some time-equivalent sections are not enriched in redox-sensitive trace metals, and also exhibit contrasting S-isotope and N-isotope systematics. A more complex configuration of the Yangtze Platform, for example with vast intra-shelf basins, together with changing (generally rising) eustatic sea-level may account for this variability. In this regard, it is proposed that a mid-depth sulphidic wedge, caused by nutrient upwelling over the south-east platform margins, migrated over time (but generally landward), leading to spatially variable redox conditions determined by sea-level, currents and bathymetric constraints. The changing extents of anoxia and euxinia appear to have limited the distribution of emerging Ediacaran and Cambrian ecosystems

    Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants

    Full text link
    Quantum electrodynamics is the first successful and still the most successful quantum field theory. Simple atoms, being essentially QED systems, allow highly accurate theoretical predictions. Because of their simple spectra, such atoms have been also efficiently studied experimentally frequently offering the most precisely measured quantities. Our review is devoted to comparison of theory and experiment in the field of precision physics of light simple atoms. In particular, we consider the Lamb shift in the hydrogen atom, the hyperfine structure in hydrogen, deuterium, helium-3 ion, muonium and positronium, as well as a number of other transitions in positronium. Additionally to a spectrum of unperturbed atoms, we consider annihilation decay of positronium and the g factor of bound particles in various two-body atoms. Special attention is paid to the uncertainty of the QED calculations due to the uncalculated higher-order corrections and effects of the nuclear structure. We also discuss applications of simple atoms to determination of several fundamental constants

    Factors influencing the efficacy of intra-articular steroid injections in patients with juvenile idiopathic arthritis

    Full text link
    A retrospective chart review was performed of all patients with juvenile idiopathic arthritis (JIA) followed at our clinic who had an intra-articular steroid injection between 1 January 1997 and 31 December 2001. The aim of the study was to evaluate the outcome of intra-articular steroid injections (iaS) and determine prognostic factors. During the study period, 202 iaS were performed in 60 patients, of whom 37 had oligoarticular JIA, 15 had polyarticular, rheumatoid factor-negative JIA and four each had systemic and enthesitis-related JIA. The median duration of remission was 23.1 months (range: 0-69 months). At last follow-up, 103 joints (51%) of 47 patients were still in remission after a median follow-up time of 28 months (range: 1-69 months). For the total cohort, the remission was longer for wrist and finger joints [risk ratio (RR): 0.2], with concomitant treatment with methotrexate (RR: 0.28) and for enthesitis-related arthritis (RR: 0.34). For the group of knee joints, remission was longer with concomitant treatment with methotrexate (RR: 0.37), with triamcinolone hexacetonide (RR: 0.77) and with general anaesthesia for the procedure (RR: 0.56). Mild side effects were observed in 45 iaS (22.3%), and skin atrophy occurred at the injection site in 2% of injections, but no major adverse event occurred in our cohort. In conclusion, iaS is a safe procedure with a median duration of remission of 23.1 months. The remission was longer in the joints of the upper extremity, with concomitant treatment with methotrexate and when the injection was performed under general anaesthesia

    A new estimate of detrital redox-sensitive metal concentrations and variability in fluxes to marine sediments

    No full text
    The enrichment and depletion of redox sensitive trace metals in marine sediments have been used extensively as paleoredox proxies. The trace metals in shale are comprised of both detrital (transported or particulate) and authigenic (precipitated, redox-driven) constituents, potentially complicating the use of this suite of proxies. Untangling the influence of these components is vital for the interpretation of enrichments, depletions, and isotopic signals of iron (Fe), chromium (Cr), uranium (U), and vanadium (V) observed in the rock record. Traditionally, a single crustal average is used as a cutoff for detrital input, and concentrations above or below this value are interpreted as redox derived authigenic enrichment or depletion, while authigenic isotopic signals are frequently corrected for an assumed detrital contribution. Building from an extensive study of soils across the continental United States – which upon transport will become marine sediments – and their elemental concentrations, we find large deviations from accepted crustal averages in redox-sensitive metals (Fe, Cr, U, V) compared to typical detrital tracers (Al, Ti, Sc, Th) and provide new estimates for detrital contributions to the ocean. The variability in these elemental ratios is present over large areas, comparable to the catchment-size of major rivers around the globe. This heterogeneity in detrital flux highlights the need for a reevaluation of how the detrital contribution is assessed in trace metal studies, and the use of confidence intervals rather than single average values, especially in local studies or in the case of small authigenic enrichments
    corecore