3,854 research outputs found

    Radiolysis of the Glycolaldehyde-Na+Montmor- illonite and Glycolaldehyde-Fe3+Montmorillonite Systems in Aqueous Suspension under Gamma Radiation Fields: Implications in Chemical Evolution

    Get PDF
    The stability and reactivity of organic molecules with biological and pre-biological significance in primitive conditions are of paramount importance in chemical evolution studies. Sugars are an essential component in biological systems for the different roles that they play in living beings. The objective of the present work is to study the gamma radiolysis of aqueous solutions of glycolaldehyde, the simplest sugar and aqueous suspensions of glycolaldehyde-Na+-montmorillonite and glycolaldehyde-Fe3+Montmorillonite. Our results indicate that the radiolysis of the aqueous solutions of glycolaldehyde (0.03M), oxygen free, mainly produce the linear dimer known as eritriol (122 g/mol) and a sugar-like compound with six carbon atoms (180 g/mol). The experiments with the clay suspensions show that clays can adsorb glycolaldehyde and protect it from gamma irradiation. Additionally, it was observed that depending on the cation present in the clay, the percentage and the product (monomer or cyclic dimer) adsorption was different. In the case of Fe3+ Montmorillonite, this clay catalyzed the decomposition of glycolaldehyde, forming small amounts non-identified products. The analysis of these systems was performed by ATR-FTIR, UV spectroscopy, liquid chromatography (UHPLC-UV), and HPLC coupled to a mass spectrometry

    Study of L-Glutamic Acid in Solid State for its Possible Use as a Gamma Dosimeter at Different Temperatures (77, 195 and 295 K)

    Get PDF
    The experimental response of the dosimeter as a function of the irradiation temperature plays an important role, and this effect has consequences in the practical applications of dosimetry. In this work, L-glutamic acid (2-aminopentanedioic acid) is proposed to be a good response, easy to handle, and a cheap gamma dosimeter. For this purpose, polycrystalline samples were irradiated with gamma rays at 77, 195, and 295 K and doses in the kiloGray range (43–230 kGy). The potential use of the glutamic acid system as a chemical dosimeter is based on the formation of stable free radicals when the amino acid is exposed to ionizing radiation. The observed species in these experiments were attributed to deamination and decarboxylation reactions that were studied using electron spin resonance (ESR). The results indicate that the analysis generates a linear response as the irradiation dose increases in a reliable range for industrial and research purposes at three different temperatures

    Study of Solid-State Radiolysis of Behenic, Fumaric, and Sebacic Acids for their Possible Use as Gamma Dosimeters Measured Via ATR-FT-IR Spectroscopy

    Get PDF
    The intensive use of ionizing radiation has promoted the constant investigation of adequate dosimetric systems in the measurement of doses applied in irradiated products. The objective of this work is to propose gamma dosimetric systems, using carboxylic acids in a solid state and measuring the change via infrared spectroscopy (carboxylic acid/ ATR-FT-IR1). We worked with three systems: (1) behenic acid/ATR-FT-IR, (2) sebacic acid/ATR-FT-IR, and (3) fumaric acid/ATR-FT-IR. The change in absorbance corresponding to the stretching vibration frequency of the carbonyl group to the absorbed dose (in the range of kGy) was measured. The results showed that the acid/ATR-FT-IR systems have a linear response with respect to the absorbed dose, for behenic acid/ATR-FT-IR from 0 to 122 kGy, for ATR-FT-IR sebacic acid from 0 to 61 kGy, and for fumaric acid/ATR-FT-IR from 0 to 34 kGy. The results indicated that the linear response of the absorbance dose in the three systems allows us to continue studying other variables to be able to propose them as chemical dosimeters

    Gamma Dosimetry Using Some Dyes in Organic Solvents Solutions at 295 and 77 K

    Get PDF
    The aim of this work is to study the behavior under irradiation of different dyes (green malachite, methyl orange, red cresol, and bromothymol blue) in organic solvents (acetone and methanol) at different gamma doses and different temperatures to propose them as possible dosimeters for low-temperature applications. For this purpose, organic dissolutions were irradiated with gamma rays in the kiloGray (kGy) range at 77 and 295 K, and the color bleaching of the solutions was followed spectrophotometrically (UV-Vis range). The response curves at different temperatures show the linear range interval from 10 to 40 kGy with correlation coefficients of 0.999 and 0.998 for some systems. This is the main reason to continue carrying out studies that allow the proposal of these systems as chemical dosimeters

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    Get PDF
    Results of a search for H → τ τ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV respectively. All combinations of leptonic (τ → `νν¯ with ` = e, µ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of µ = 1.43 +0.43 −0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model
    corecore